Preparation and characterization of thick metastable sputter deposits
International Nuclear Information System (INIS)
Allen, R.P.; Dahlgren, S.D.; Merz, M.D.
1975-01-01
High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content
Numerical simulation of sediment deposition thickness at Beidaihe International Yacht Club
Directory of Open Access Journals (Sweden)
Cheng-gang Lu
2010-09-01
Full Text Available The finite element method (FEM was used to simulate sediment hydrodynamics at the Beidaihe International Yacht Club, and a two-dimensional model was established. The sediment movement and deposition were analyzed under many tidal conditions in conjunction with the hydrological regime of the Daihe River. The peak value of the sediment deposition thickness appears in the main channel and around the estuary. The sediment deposition thickness is essentially constant and relatively small in the project area. The sediment deposition thickness in the main channel, in the yachting area, and around the hotel is greater than the other areas in the project. Regular excavation and dredging of the channel is the best measure for mitigating the sedimentation.
Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.
Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P
2018-04-04
Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.
The Novo Okno copper deposit of olistostrome origin (Bor, Eastern Serbia
Directory of Open Access Journals (Sweden)
Antonijević Ivan
2011-01-01
Full Text Available The copper deposit Novo Okno, uncovered at present, with non-ore and ore clasts of massive sulphides (from 0.5 to 50 m3 in size, has many distinctive features that indicate its olistostrome origin. The deposit is chaotic in structure, unstratified, with the lower surface unconformable over the underlying parent rock of the basin. It is a lens-like body, with the longer axis directed east and west, variable in thickness from 15 to 28 metres, about 335 metres long and less than 140 metres wide. These and other characteristics of the body indicate a unified, reworked, olistostrome copper deposit formed from primary ore bodies of the Bor mineral deposit and vulcanite, destroyed by volcanic explosion into blocks and rocks of Turonian age and extrusion and concurrent deposition on the land surface. Gravitational massive sliding of the consolidated rocks down the slopes of the volcanic relief and chaotic accumulation of ore and non-ore clasts (olistoliths in a marine basin evolved in the Upper Turonian and the Lower Senonian.
State of the art in thin film thickness and deposition rate monitoring sensors
International Nuclear Information System (INIS)
Buzea, Cristina; Robbie, Kevin
2005-01-01
In situ monitoring parameters are indispensable for thin film fabrication. Among them, thickness and deposition rate control are often the most important in achieving the reproducibility necessary for technological exploitation of physical phenomena dependent on film microstructure. This review describes the types of thickness and deposition rate sensors and their theoretical and phenomenological background, underlining their performances, as well as advantages and disadvantages
International Nuclear Information System (INIS)
Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F.; Bedi, Jasbir S.; Perry, Christopher C.; Chen, Qiao
2015-01-01
Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO 3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO 3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.
Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining
International Nuclear Information System (INIS)
Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng
2009-01-01
The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)
Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)
2015-11-15
Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulations and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.
Energy Technology Data Exchange (ETDEWEB)
Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F. [Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ (United Kingdom); Bedi, Jasbir S. [School of Public Health & Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004 Punjab (India); Perry, Christopher C. [Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350 (United States); Chen, Qiao, E-mail: qiao.chen@sussex.ac.uk [Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ (United Kingdom)
2015-12-15
Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO{sub 3} nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO{sub 3} nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.
A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios
Directory of Open Access Journals (Sweden)
A. O. González-Mellado
2010-11-01
Full Text Available The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4–150 km from the eruptive source.
The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available
Directory of Open Access Journals (Sweden)
Urška Pivk Kupirovič
2012-01-01
Full Text Available Lipid content in food strongly influences food perception on the level of textural properties. Lipids in contact with the tongue and palate are substantially responsible for the sensory impact of a product. The aim of this study is to investigate the impact of oil content on the thickness of lipid deposition on oral surface as well as on the mouthfeel perception. The fluorescent probe method was used to study the thickness of lipid deposition on oral surface. We observed an increase in the thickness of lipid deposition depending on the increase of oil content in oil/water dispersions. Clear correlation was shown between the thickness of lipid deposition on oral surfaces and the perception of mouthfeel. A direct measure of undisrupted deposition of food components on oral surface contributes to the understanding of the behaviour of food components in the mouth and their influence on mouthfeel perception.
Distribution and Aggregate Thickness of Salt Deposits of the United States
U.S. Environmental Protection Agency — The map shows the distribution and aggregate thickness of salt deposits of the United States. This information is from contour map sheets, scanned and processed for...
Mower, R.W.
1973-01-01
Saturated Quaternary deposits in the Sugar Horse quadrangle supply significant quantities of water to wells from which water is withdrawn for domestic, municipal, industrial, and irrigation uses. The deposits consist of clay, silt, sand, and gravel; individual beds range from a few inches to several tens of feet thick. The principal aquifer, which is almost completely within the Quaternary deposits, supplied about 4 percent, or 9,000 acre-feet, of the municipal and industrial water used annually in Salt Lake County during 1964-68.As a general rule, more water is stored and more water will be yielded to a well where aquifers are thicker. This map can be used as a general guide to those areas where greatest amounts of water are stored in the aquifer, and where yields to wells may be greater. Local variations in the ability of saturated deposits to transmit water can alter the general relationship between aquifer thickness and yield of wells.The thickness of saturated Quaternary deposits within the area of the Sugar Horse quadrangle ranges from zero to about 650 feet, as shown on the map. The thickest section of these deposits is near the southwestern corner of the quadrangle, and the thinnest section is along the mountain front adjacent to the approximate eastern limit of saturated Quaternary deposits.The thickness of saturated Quaternary deposits shown on this map is based on drillers’ logs for 55 deep wells (which show the thickness of the Quaternary deposits) and on water-level measurements made in February 1972 in wells in unconfined shallow aquifers.Reports in the following list of selected references contain other information about the saturated Quaternary deposits in this and adjacent parts of Jordan Valley, Utah. The basic-data reports and releases contain well logs, water-level measurements, and other types of basic ground-water data. The interpretive repots contain discussions of the occurrence of ground water, tests to determine hydraulic properties of
Synchronization of identical chaotic systems through external chaotic driving
International Nuclear Information System (INIS)
Patidar, V.; Sud, K.K.
2005-11-01
In recent years, the study of synchronization of identical chaotic systems subjected to a common fluctuating random driving signal has drawn considerable interest. In this communication, we report that it is possible to achieve synchronization between two identical chaotic systems, which are not coupled directly but subjected to an external chaotic signal. The external chaotic signal may be obtained from any chaotic system identical or non-identical to both identical chaotic systems. Results of numerical simulations on well known Roessler and jerk dynamical systems have been presented. (author)
Digital chaotic sequence generator based on coupled chaotic systems
International Nuclear Information System (INIS)
Shu-Bo, Liu; Jing, Sun; Jin-Shuo, Liu; Zheng-Quan, Xu
2009-01-01
Chaotic systems perform well as a new rich source of cryptography and pseudo-random coding. Unfortunately their digital dynamical properties would degrade due to the finite computing precision. Proposed in this paper is a modified digital chaotic sequence generator based on chaotic logistic systems with a coupling structure where one chaotic subsystem generates perturbation signals to disturb the control parameter of the other one. The numerical simulations show that the length of chaotic orbits, the output distribution of chaotic system, and the security of chaotic sequences have been greatly improved. Moreover the chaotic sequence period can be extended at least by one order of magnitude longer than that of the uncoupled logistic system and the difficulty in decrypting increases 2 128 *2 128 times indicating that the dynamical degradation of digital chaos is effectively improved. A field programmable gate array (FPGA) implementation of an algorithm is given and the corresponding experiment shows that the output speed of the generated chaotic sequences can reach 571.4 Mbps indicating that the designed generator can be applied to the real-time video image encryption. (general)
Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A
2018-03-01
Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.
Wang, Z; Hanada, K; Yoshida, N; Shimoji, T; Miyamoto, M; Oya, Y; Zushi, H; Idei, H; Nakamura, K; Fujisawa, A; Nagashima, Y; Hasegawa, M; Kawasaki, S; Higashijima, A; Nakashima, H; Nagata, T; Kawaguchi, A; Fujiwara, T; Araki, K; Mitarai, O; Fukuyama, A; Takase, Y; Matsumoto, K
2017-09-01
After several experimental campaigns in the Kyushu University Experiment with Steady-state Spherical Tokamak (QUEST), the originally stainless steel plasma-facing wall (PFW) becomes completely covered with a deposited film composed of mixture materials, such as iron, chromium, carbon, and tungsten. In this work, an innovative colorimetry-based method was developed to measure the thickness of the deposited film on the actual QUEST wall. Because the optical constants of the deposited film on the PFW were position-dependent and the extinction coefficient k 1 was about 1.0-2.0, which made the probing light not penetrate through some thick deposited films, the colorimetry method developed can only provide a rough value range of thickness of the metal-containing film deposited on the actual PFW in QUEST. However, the use of colorimetry is of great benefit to large-area inspections and to radioactive materials in future fusion devices that will be strictly prohibited from being taken out of the limited area.
The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance
Bakrania, Smitesh D.; Wooldridge, Margaret S.
2009-01-01
This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition meth...
CHAOTIC CAPTURE OF NEPTUNE TROJANS
International Nuclear Information System (INIS)
Nesvorny, David; Vokrouhlicky, David
2009-01-01
Neptune Trojans (NTs) are swarms of outer solar system objects that lead/trail planet Neptune during its revolutions around the Sun. Observations indicate that NTs form a thick cloud of objects with a population perhaps ∼10 times more numerous than that of Jupiter Trojans and orbital inclinations reaching ∼25 deg. The high inclinations of NTs are indicative of capture instead of in situ formation. Here we study a model in which NTs were captured by Neptune during planetary migration when secondary resonances associated with the mean-motion commensurabilities between Uranus and Neptune swept over Neptune's Lagrangian points. This process, known as chaotic capture, is similar to that previously proposed to explain the origin of Jupiter's Trojans. We show that chaotic capture of planetesimals from an ∼35 Earth-mass planetesimal disk can produce a population of NTs that is at least comparable in number to that inferred from current observations. The large orbital inclinations of NTs are a natural outcome of chaotic capture. To obtain the ∼4:1 ratio between high- and low-inclination populations suggested by observations, planetary migration into a dynamically excited planetesimal disk may be required. The required stirring could have been induced by Pluto-sized and larger objects that have formed in the disk.
Energy Technology Data Exchange (ETDEWEB)
Cha, Nam-Goo; Lee, Bong Kuk; Kanki, Teruo; Lee, Hea Yeon; Kawai, Tomoji; Tanaka, Hidekazu, E-mail: h-tanaka@sanken.osaka-u.ac.j [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)
2009-09-30
This paper provides a unique strategy for controlling integrated hollow nanostructure arrays such as boxes or pillars at the nanometer scale. The key merit of this technique is that it can overcome resolution limits by sidewall deposition and deposit various materials using a sputtering method. The sputtering method can be replaced by other dry deposition techniques such as pulsed laser deposition (PLD) for complex functional materials. Furthermore, it can produce low-cost large-area fabrication and high reproducibility using the NIL (nanoimprint lithograph) process. The fabrication method consists of a sequence of bilayer spin-coating, UV-NIL, RIE (reactive ion etching), sputtering, ion milling and piranha cleaning processes. By changing the deposition time and molds, various thicknesses and shapes can be fabricated, respectively. Furthermore, the fabricated Au box nanostructure has a bending zone of the top layer and a {approx}17 nm undercut of the bottom layer as observed by SEM (scanning electron microscope). The sidewall thickness was changed from 12 to 61 nm by controlling the deposition time, and was investigated to understand the relationship with blanket thicknesses and geometric effects. The calculated sidewall thickness matched well with experimental results. Using smaller hole-patterned molds, integrated nanobox arrays, with inner squares measuring {approx}160 nm, and nanopillar arrays, with inside pores measuring {approx}65 nm, were fabricated under the same conditions.
Thickness dependent growth of low temperature atomic layer deposited zinc oxide films
International Nuclear Information System (INIS)
Montiel-González, Z.; Castelo-González, O.A.; Aguilar-Gama, M.T.; Ramírez-Morales, E.; Hu, H.
2017-01-01
Highlights: • Polycrystalline columnar ZnO thin films deposited by ALD at low temperatures. • Higher deposition temperature leads to a greater surface roughness in the ALD ZnO films. • Higher temperature originates larger refractive index values of the ALD ZnO films. • ZnO thin films were denser as the numbers of ALD deposition cycles were larger. • XPS analysis revels mayor extent of the DEZ reaction during the ALD process. - Abstract: Zinc oxide films are promising to improve the performance of electronic devices, including those based on organic materials. However, the dependence of the ZnO properties on the preparation conditions represents a challenge to obtain homogeneous thin films that satisfy specific applications. Here, we prepared ZnO films of a wide range of thicknesses by atomic layer deposition (ALD) at relatively low temperatures, 150 and 175 °C. From the results of X-ray photoelectron spectroscopy, X-ray diffraction and Spectroscopic Ellipsometry it is concluded that the polycrystalline structure of the wurtzite is the main phase of the ALD samples, with OH groups on their surface. Ellipsometry revealed that the temperature and the deposition cycles have a strong effect on the films roughness. Scanning electron micrographs evidenced such effect, through the large pyramids developed at the surface of the films. It is concluded that crystalline ZnO thin films within a broad range of thickness and roughness can be obtained for optic or optoelectronic applications.
Growth of BaTiO3-PVDF composite thick films by using aerosol deposition
Cho, Sung Hwan; Yoon, Young Joon
2016-01-01
Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.
Effect of layer thickness on the thermal release from Be-D co-deposited layers
Baldwin, M. J.; Doerner, R. P.
2014-08-01
The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967-70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D2 release from co-deposited Be-(0.05)D layers produced at ˜323 K. Bake desorption of layers of thickness 0.2-0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be-D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction.
Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying
2009-08-01
By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.
Effects of the thickness of gold deposited on a source backing film in the 4πβ-counting
International Nuclear Information System (INIS)
Miyahara, Hiroshi; Yoshida, Makoto; Watanabe, Tamaki
1976-01-01
A gold deposited VYNS film as a source backing in the 4πβ-counting has generally been used for reducing the absorption of β-rays. The thickness of the film with the gold is usually a few times thicker than the VYNS film itself. However, Because the appropriate thickness of gold has not yet been determined, the effects of gold thickness on electrical resistivity, plateau characteristics and β-ray counting efficiency were studied. 198 Au (960 keV), 60 Co(315 keV), 59 Fe(273 keV) and 95 Nb(160 keV), which were prepared as sources by the aluminium chloride treatment method, were used. Gold was evaporated under a deposition rate of 1 - 5 μg/cm 2 /min at a pressure less than 1 x 10 -5 Torr. Results show that the gold deposition on the side opposite the source after source preparation is essential. In this case, a maximum counting efficiency is obtained at the mean thickness of 2 μg/cm 2 . When gold is deposited only on the same side as the source, a maximum counting efficiency, which is less than that in the former case, is obtained at the mean thickness of 20 μg/cm 2 . (Evans, J.)
Measuring the thickness of austenitic weld deposits on carbon steel walls using a magnetic method
International Nuclear Information System (INIS)
Wagner, K.
1988-01-01
The theoretical background is described of a magnetic method characterized by a marked compensation of the undesirable effect of δ-ferrite content in the deposit, on the accuracy of measuring deposit thickness. A description is also given of the basic types of sensors and the results are summarized of comparing measurements performed on weld deposits of WWER-type reactor pressure vessels. (author). 7 figs., 5 refs
Effect of thickness on electrical properties of SILAR deposited SnS thin films
Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba
2016-03-01
Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.
Directory of Open Access Journals (Sweden)
Rachel L. Wilson
2018-03-01
Full Text Available Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes, at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.
Effect of layer thickness on the thermal release from Be–D co-deposited layers
International Nuclear Information System (INIS)
Baldwin, M.J.; Doerner, R.P.
2014-01-01
The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967–70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D 2 release from co-deposited Be–(0.05)D layers produced at ∼323 K. Bake desorption of layers of thickness 0.2–0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be–D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction. (paper)
Energy Technology Data Exchange (ETDEWEB)
Pryds, N. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)]. E-mail: nini.pryds@risoe.dk; Toftmann, B. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Bilde-Sorensen, J.B. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark); Schou, J. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Linderoth, S. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)
2006-04-30
Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.
International Nuclear Information System (INIS)
Pryds, N.; Toftmann, B.; Bilde-Sorensen, J.B.; Schou, J.; Linderoth, S.
2006-01-01
Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced
International Nuclear Information System (INIS)
Mann, Jonathan R.; Noufi, Rommel
2012-01-01
A technique has been developed that can measure the thickness of a 30–70 nm thin film of cadmium sulfide on a Cu(In,Ga)Se 2 substrate, in real time, as it grows in a chemical bath. The technique does not damage the film, and can be used to monitor batch depositions and roll-to-roll depositions with equal accuracy. The technique is based on reflectance spectroscopy through the chemical bath. - Highlights: ► Reflection spectra were collected during the chemical bath deposition of CdS. ► Two algorithms were generated to extract film thickness from each spectrum. ► Two conventional techniques were used to independently verify CdS film thicknesses. ► The accuracies of the algorithms are within 7% of the actual thicknesses. ► The algorithms offer in situ, real time thicknesses through the chemical bath.
Lamontagne, M.; Thomas, M.; Silliker, J.; Jobin, D.
2011-11-01
In this study, measurements of gravity were made to map and model the thickness of Quaternary deposits (sand and clay) overlying Ordovician limestones in a suburb of Ottawa (Orléans, Ontario). Because ground motion amplification is partly related to the thickness of unconsolidated deposits, this work helps refine the assessment of the earthquake damage potential of the area. It also helps the mapping of clay basins, which can locally exceed 100 m in thickness, where ground motion amplification can occur. Previous work, including well log data and seismic methods, have yielded a wealth of information on near-surface geology in Orléans, thereby providing the necessary constraints to test the applicability of gravity modeling in other locations where other methods cannot always be used. Some 104 gravity stations were occupied in an 8 × 12 km test area in the Orléans. Stations were accurately located with differential GPS that provided centimetric accuracy in elevation. Densities of the unconsolidated Quaternary deposits (Champlain Sea clay) determined on core samples and densities determined on limestone samples from outcrops were used to constrain models of the clay layer overlying the higher density bedrock formations (limestone). The gravity anomaly map delineates areas where clay basins attain > 100 m depth. Assuming a realistic density for the Champlain Sea clays (1.9-2.1 g/cm 3), the thickness over the higher density bedrock formations (Ordovician carbonate rocks) was modeled and compared with well logs and two seismic reflection profiles. The models match quite well with the information determined from well logs and seismic methods. It was found that gravity and the thickness of unconsolidated deposits are correlated but the uncertainties in both data sets preclude the definition of a direct correlation between the two. We propose that gravity measurements at a local scale be used as an inexpensive means of mapping the thickness of unconsolidated deposits
International Nuclear Information System (INIS)
Wei Jun; Liao Xiaofeng; Wong, Kwok-wo; Xiang Tao
2006-01-01
Based on the study of some previously proposed chaotic encryption algorithms, we found that it is dangerous to mix chaotic state or iteration number of the chaotic system with ciphertext. In this paper, a new chaotic cryptosystem is proposed. Instead of simply mixing the chaotic signal of the proposed chaotic cryptosystem with the ciphertext, a noise-like variable is utilized to govern the encryption and decryption processes. This adds statistical sense to the new cryptosystem. Numerical simulations show that the new cryptosystem is practical whenever efficiency, ciphertext length or security is concerned
Energy Technology Data Exchange (ETDEWEB)
Apostol, Irina [S.C. IPEE Amiral Trading Impex S.A., 115300 Curtea de Arges (Romania); Mahajan, Amit [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Monty, Claude J.A. [CNRS-PROMES Laboratory, 66120 Font Romeu Odeillo (France); Venkata Saravanan, K., E-mail: venketvs@cutn.ac.in [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Department of Physics, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur 61010 (India)
2015-12-15
Highlights: • Obtaining nano-crystalline magnesium titanium oxide powders by solar physical vapor deposition (SPVD) process. And using these nano-powders to obtain thick films on conducting substrates by electrophoretic deposition (EPD). • SPVD is a core innovative, original and environmentally friendly process to prepare nano-materials in a powder form. • Sintered thick films exhibited dielectric constant, ε{sub r} ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz, which is comparable to the values reported earlier. • New contributions to the pool of information on the preparation of nano-structured MgTiO{sub 3} thick films at low temperatures. • A considerable decrease in synthesis temperature of pure MgTiO{sub 3} thick film was observed by the combination of SPVD and EPD. - Abstract: A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO{sub 3} nanostructured thick films is presented. Obtaining nanostructured MgTiO{sub 3} thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro – DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22–25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The
Investigation of the electrochemical deposition of thick layers of cadmium telluride
International Nuclear Information System (INIS)
Rousset, J.
2007-04-01
This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented
Measurement of the thickness of a target deposited in a substrate
International Nuclear Information System (INIS)
Martinez Q, E.; Aguilera, E.F.
1990-12-01
Being based on the Elastic scattering and in the Energy losses that suffer a projectile to the interacting with the matter, a method that allows to determine the thickness of a target deposited in a more heavy substrate is presented. The obtained results are consistent with that waited and the derived errors of the method are small. The used technique allows to reduce in considerable form the systematic errors coming from the calibration of the equipment. It is considered that this method is applicable in an interval of thickness quite wide and for many materials since it is only necessary to choose the projectile type and the energy of the same one appropriately. (Author)
International Nuclear Information System (INIS)
Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.
2007-01-01
Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells
Dynamic Parameter-Control Chaotic System.
Hua, Zhongyun; Zhou, Yicong
2016-12-01
This paper proposes a general framework of 1-D chaotic maps called the dynamic parameter-control chaotic system (DPCCS). It has a simple but effective structure that uses the outputs of a chaotic map (control map) to dynamically control the parameter of another chaotic map (seed map). Using any existing 1-D chaotic map as the control/seed map (or both), DPCCS is able to produce a huge number of new chaotic maps. Evaluations and comparisons show that chaotic maps generated by DPCCS are very sensitive to their initial states, and have wider chaotic ranges, better unpredictability and more complex chaotic behaviors than their seed maps. Using a chaotic map of DPCCS as an example, we provide a field-programmable gate array design of this chaotic map to show the simplicity of DPCCS in hardware implementation, and introduce a new pseudo-random number generator (PRNG) to investigate the applications of DPCCS. Analysis and testing results demonstrate the excellent randomness of the proposed PRNG.
Thick CrN/NbN multilayer coating deposited by cathodic arc technique
Energy Technology Data Exchange (ETDEWEB)
Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2017-01-15
The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)
International Nuclear Information System (INIS)
Chien, T.-I.; Liao, T.-L.
2005-01-01
This paper presents a secure digital communication system based on chaotic modulation, cryptography, and chaotic synchronization techniques. The proposed system consists of a Chaotic Modulator (CM), a Chaotic Secure Transmitter (CST), a Chaotic Secure Receiver (CSR) and a Chaotic Demodulator (CDM). The CM module incorporates a chaotic system and a novel Chaotic Differential Peaks Keying (CDPK) modulation scheme to generate analog patterns corresponding to the input digital bits. The CST and CSR modules are designed such that a single scalar signal is transmitted in the public channel. Furthermore, by giving certain structural conditions of a particular class of chaotic system, the CST and the nonlinear observer-based CSR with an appropriate observer gain are constructed to synchronize with each other. These two slave systems are driven simultaneously by the transmitted signal and are designed to synchronize and generate appropriate cryptography keys for encryption and decryption purposes. In the CDM module, a nonlinear observer is designed to estimate the chaotic modulating system in the CM. A demodulation mechanism is then applied to decode the transmitted input digital bits. The effectiveness of the proposed scheme is demonstrated through the numerical simulation of an illustrative communication system. Synchronization between the chaotic circuits of the transmitter and receiver modules is guaranteed through the Lyapunov stability theorem. Finally, the security features of the proposed system in the event of attack by an intruder in either the time domain or the frequency domain are discussed
International Nuclear Information System (INIS)
Cook, A.
1990-09-01
An elementary account of the origin of chaotic behaviour in classical dynamics is given with examples from geophysics, and in conclusion some thoughts about what can be predicted of chaotic behaviour and what sorts of arguments can be used to guide human behaviour in chaotic conditions are presented. 4 refs
International Nuclear Information System (INIS)
Hu Manfeng; Xu Zhenyuan; Zhang Rong; Hu Aihua
2007-01-01
Based on the active control idea and the invariance principle of differential equations, a general scheme of adaptive full state hybrid projective synchronization (FSHPS) and parameters identification of a class of chaotic (hyper-chaotic) systems with linearly dependent uncertain parameters is proposed in this Letter. With this effective scheme parameters identification and FSHPS of chaotic and hyper-chaotic systems can be realized simultaneously. Numerical simulations on the chaotic Chen system and the hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme
Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.
Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.
Cascade Chaotic System With Applications.
Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip
2015-09-01
Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.
Directory of Open Access Journals (Sweden)
Chin-Chiuan Kuo
2010-01-01
Full Text Available Indium molybdenum oxide (IMO films were deposited onto the polyethersulfone (PES substrates by ion-beam-assisted evaporation (IBAE deposition at low temperature in this study. The effects of film thickness on their optical and electrical properties were investigated. The results show that the deposited IMO films exhibit a preferred orientation of B(222. The electrical resistivity of the deposited film initially reduces then subsequently increases with film thickness. The IMO film with the lowest resistivity of 7.61 × 10−4 ohm-cm has been achieved when the film thickness is 120 nm. It exhibits a satisfactory surface roughness pv of 8.75 nm and an average visible transmittance of 78.7%.
de Oliveira, G. L.; Ramos, R. V.
2018-03-01
In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.
Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer
Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.
2018-05-01
In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.
International Nuclear Information System (INIS)
Ahmadi, Mohamadreza; Mojallali, Hamed
2012-01-01
Highlights: ► A new meta-heuristic optimization algorithm. ► Integration of invasive weed optimization and chaotic search methods. ► A novel parameter identification scheme for chaotic systems. - Abstract: This paper introduces a novel hybrid optimization algorithm by taking advantage of the stochastic properties of chaotic search and the invasive weed optimization (IWO) method. In order to deal with the weaknesses associated with the conventional method, the proposed chaotic invasive weed optimization (CIWO) algorithm is presented which incorporates the capabilities of chaotic search methods. The functionality of the proposed optimization algorithm is investigated through several benchmark multi-dimensional functions. Furthermore, an identification technique for chaotic systems based on the CIWO algorithm is outlined and validated by several examples. The results established upon the proposed scheme are also supplemented which demonstrate superior performance with respect to other conventional methods.
Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition
Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi
2002-01-01
The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved
Reconfigurable chaotic logic gates based on novel chaotic circuit
International Nuclear Information System (INIS)
Behnia, S.; Pazhotan, Z.; Ezzati, N.; Akhshani, A.
2014-01-01
Highlights: • A novel method for implementing logic gates based on chaotic maps is introduced. • The logic gates can be implemented without any changes in the threshold voltage. • The chaos-based logic gates may serve as basic components of future computing devices. - Abstract: The logical operations are one of the key issues in today’s computer architecture. Nowadays, there is a great interest in developing alternative ways to get the logic operations by chaos computing. In this paper, a novel implementation method of reconfigurable logic gates based on one-parameter families of chaotic maps is introduced. The special behavior of these chaotic maps can be utilized to provide same threshold voltage for all logic gates. However, there is a wide interval for choosing a control parameter for all reconfigurable logic gates. Furthermore, an experimental implementation of this nonlinear system is presented to demonstrate the robustness of computing capability of chaotic circuits
Grave, Daniel A.
Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while
International Nuclear Information System (INIS)
Bassim, N. D.; Schenck, P. K.; Otani, M.; Oguchi, H.
2007-01-01
Pulsed laser deposition was used to grow continuous spread thin film libraries of continuously varying composition as a function of position on a substrate. The thickness of each component that contributes to a library can be empirically modeled to a bimodal cosine power distribution. We deposited ternary continuous spread thin film libraries from Al 2 O 3 , HfO 2 , and Y 2 O 3 targets, at two different background pressures of O 2 : 1.3 and 13.3 Pa. Prior to library deposition, we deposited single component calibration films at both pressures in order to measure and fit the thickness distribution. Following the deposition and fitting of the single component films, we predict both the compositional coverage and the thickness of the libraries. Then, we map the thickness of the continuous spread libraries using spectroscopic reflectometry and measure the composition of the libraries as a function of position using mapping wavelength-dispersive spectrometry (WDS). We then compare the compositional coverage of the libraries and observe that compositional coverage is enhanced in the case of 13.3 Pa library. Our models demonstrate linear correlation coefficients of 0.98 for 1.3 Pa and 0.98 for 13.3 Pa with the WDS
Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001).
Bergamaschini, R; Brehm, M; Grydlik, M; Fromherz, T; Bauer, G; Montalenti, F
2011-07-15
The evolution of the wetting layer (WL) thickness during Ge deposition on Si(001) is analyzed with the help of a rate-equation approach. The combined role of thickness, island volume and shape-dependent chemical potentials is considered. Several experimental observations, such as WL thinning following the pyramid-to-dome transformation, are captured by the model, as directly demonstrated by a close comparison with photoluminescence measurements (PL) on samples grown at three different temperatures. The limitations of the model in describing late stages of growth are critically addressed.
Stages of chaotic synchronization.
Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.
1998-09-01
In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.
Energy Technology Data Exchange (ETDEWEB)
Sharma, Mamta [Department of Electronic Science, University of Delhi South Campus, New Delhi 110021 (India); Mehra, R.M. [Department of Electronic Science, University of Delhi South Campus, New Delhi 110021 (India)], E-mail: rammehra2003@yahoo.com
2008-12-30
This paper reports deposition and characterization of Zn{sub 0.94}Co{sub 0.05}Al{sub 0.01}O films of thickness ranging from 70 nm to 400 nm. These films were deposited on a glass (Corning, 7059) substrate using sol-gel route. The films have been characterized to study their structural, electrical, optical and magnetic properties. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to study the crystallinity and growth mode of the films. The films deposited up to a thickness of 200 nm showed improvement in crystallinity and preferential c-axis orientation. A transition in the growth mode from vertical (c-axis) to lateral (a and b-axis) was observed with further increase in the thickness of the film. The average transmittance of the films for thickness less than 200 nm was above 80% in the visible region which decreased at higher thickness of the film. The resistivity of the film was found to decrease with increase in thickness up to 200 nm. Ferromagnetism, at room temperature, was confirmed for 200 nm and 400 nm thick films.
International Nuclear Information System (INIS)
Sharma, Mamta; Mehra, R.M.
2008-01-01
This paper reports deposition and characterization of Zn 0.94 Co 0.05 Al 0.01 O films of thickness ranging from 70 nm to 400 nm. These films were deposited on a glass (Corning, 7059) substrate using sol-gel route. The films have been characterized to study their structural, electrical, optical and magnetic properties. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to study the crystallinity and growth mode of the films. The films deposited up to a thickness of 200 nm showed improvement in crystallinity and preferential c-axis orientation. A transition in the growth mode from vertical (c-axis) to lateral (a and b-axis) was observed with further increase in the thickness of the film. The average transmittance of the films for thickness less than 200 nm was above 80% in the visible region which decreased at higher thickness of the film. The resistivity of the film was found to decrease with increase in thickness up to 200 nm. Ferromagnetism, at room temperature, was confirmed for 200 nm and 400 nm thick films.
Reconnaissance map showing thickness of volcanic ash deposits in the greater Hilo area, Hawaii
Buchanan-Banks, Jane M.
1983-01-01
This study was undertaken to determine the thickness and distribution of volcanic ash deposits in the greater Hilo area, Hawaii, as a step toward evaluating their susceptibility to failure during earthquake shaking. On several occasions their instability has resulted in serious damage. For example, the 1868 earthquake (m=7+), following a prolonged rainy period, caused a debris flow of hillside ash deposits that killed 31 people in Wood Valley (Bringham, 1869). The 1973 Honomu earthquake (m=6.2) resulted in more damage from shaking to areas underlain by ash deposits in the older part of Hilo than in other areas, and soil slips in ash, as well as rockfalls, were common along the roads north of town (Nielsen and others, 1977).
Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki
2013-01-01
The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425
Bildirici, Melike; Sonustun, Fulya Ozaksoy; Sonustun, Bahri
2018-01-01
In the regards of chaos theory, new concepts such as complexity, determinism, quantum mechanics, relativity, multiple equilibrium, complexity, (continuously) instability, nonlinearity, heterogeneous agents, irregularity were widely questioned in economics. It is noticed that linear models are insufficient for analyzing unpredictable, irregular and noncyclical oscillations of economies, and for predicting bubbles, financial crisis, business cycles in financial markets. Therefore, economists gave great consequence to use appropriate tools for modelling non-linear dynamical structures and chaotic behaviors of the economies especially in macro and the financial economy. In this paper, we aim to model the chaotic structure of exchange rates (USD-TL and EUR-TL). To determine non-linear patterns of the selected time series, daily returns of the exchange rates were tested by BDS during the period from January 01, 2002 to May 11, 2017 which covers after the era of the 2001 financial crisis. After specifying the non-linear structure of the selected time series, it was aimed to examine the chaotic characteristic for the selected time period by Lyapunov Exponents. The findings verify the existence of the chaotic structure of the exchange rate returns in the analyzed time period.
International Nuclear Information System (INIS)
Zhang, Xin; Zhao, Yong; Xia, Yudong; Guo, Chunsheng; Cheng, C.H.; Zhang, Yong; Zhang, Han
2015-01-01
Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La 2 Zr 2 O 7 (LZO) epitaxial films have been deposited on LaAlO 3 (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa 2 Cu 3 O 7−x (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm 2 at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors
DEFF Research Database (Denmark)
Schäfer, Mirko; Greiner, Martin
2011-01-01
to chaotic strings. Inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure are discussed. It is found that certain combinations of coupling and network disorder preserve the empirical relationship between chaotic strings and the weak and strong sector...
International Nuclear Information System (INIS)
Doron, E.; Smilanski, U.
1991-11-01
We discuss the spectra of quantized chaotic billiards from the point of view of scattering theory. We show that the spectral and resonance density functions both fluctuate about a common mean. A semiclassical treatment explains this in terms of classical scattering trajectories and periodic orbits of the poincare scattering map. This formalism is used to interpret recent experiments where the spectra of chaotic cavities where measured by microwave scattering. (author)
Synchronization of chaotic systems
International Nuclear Information System (INIS)
Pecora, Louis M.; Carroll, Thomas L.
2015-01-01
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators
Directory of Open Access Journals (Sweden)
Mario Boehme
2011-02-01
Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.
Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts
International Nuclear Information System (INIS)
Youssef, M.Z.; Abdou, M.A.
2000-01-01
The advanced power extraction (APEX) study aims at exploring new and innovative blanket concepts that can efficiently extract power from fusion devices with high neutron wall load. Among the concepts under investigation is the free liquid FW/liquid blanket concept in which a fast flowing liquid FW (∼2-3 cm) is followed by thick flowing blanket (B) of ∼40-50 cm thickness with minimal amount of structure. The liquid FW/B are contained inside the vacuum vessel (VV) with a shielding zone (S) located either behind the VV and outside the vacuum boundary (case A) or placed after the FW/B and inside the VV (case B). In this paper we investigate the nuclear characteristics of this concept in terms of: (1) attenuation capability of the liquid FW/B/S and protection of the VV and magnet against radiation damage; (2) profiles of tritium production rate and tritium breeding ratio (TBR) for several liquid candidates; and (3) profiles of heat deposition rate and power multiplication. The candidate liquid breeders considered are Li, Flibe, Li-Sn, and Li-Pb. Parameters varied are (1) FW/B thickness, L, (2) Li-6 enrichment and (3) thickness of the shield
International Nuclear Information System (INIS)
Jung, Jinwoo; Lee, Jewon; Song, Hanjung
2011-01-01
This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-μm single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with ±2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.
The variation of the density functions on chaotic spheres in chaotic space-like Minkowski space time
International Nuclear Information System (INIS)
El-Ahmady, A.E.
2007-01-01
In this article we introduce types of chaotic spheres in chaotic space-like Minkowski space time M n+1 . The variations of the density functions under the folding of these chaotic spheres are defined. The foldings restriction imposed on the density function are also discussed. The relations between the folding of geometry and pure chaotic manifolds are deduced. Some theorems concerning these relations are presented
Deutsch, Ariel N.; Head, James W.; Chabot, Nancy L.; Neumann, Gregory A.
2018-05-01
Radar-bright deposits at the poles of Mercury are located in permanently shadowed regions, which provide thermally stable environments for hosting and retaining water ice on the surface or in the near subsurface for geologic timescales. While the areal distribution of these radar-bright deposits is well characterized, their thickness, and thus their total mass and volume, remain poorly constrained. Here we derive thickness estimates for selected water-ice deposits using small, simple craters visible within the permanently shadowed, radar-bright deposits. We examine two endmember scenarios: in Case I, these craters predate the emplacement of the ice, and in Case II, these craters postdate the emplacement of the ice. In Case I, we find the difference between estimated depths of the original unfilled craters and the measured depths of the craters to find the estimated infill of material. The average estimated infilled material for 9 craters assumed to be overlain with water ice is ∼ 41-14+30 m, where 1-σ standard error of the mean is reported as uncertainty. Reported uncertainties are for statistical errors only. Additional systematic uncertainty may stem from georeferencing the images and topographic datasets, from the radial accuracy of the altimeter measurements, or from assumptions in our models including (1) ice is flat in the bowl-shaped crater and (2) there is negligible ice at the crater rims. In Case II, we derive crater excavation depths to investigate the thickness of the ice layer that may have been penetrated by the impact. While the absence of excavated regolith associated with the small craters observed suggests that impacts generally do not penetrate through the ice deposit, the spatial resolution and complex illumination geometry of images may limit the observations. Therefore, it is not possible to conclude whether the small craters in this study penetrate through the ice deposit, and thus Case II does not provide a constraint on the ice thickness
Advances and applications in chaotic systems
Volos, Christos
2016-01-01
This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
Using Chaotic System in Encryption
Findik, Oğuz; Kahramanli, Şirzat
In this paper chaotic systems and RSA encryption algorithm are combined in order to develop an encryption algorithm which accomplishes the modern standards. E.Lorenz's weather forecast' equations which are used to simulate non-linear systems are utilized to create chaotic map. This equation can be used to generate random numbers. In order to achieve up-to-date standards and use online and offline status, a new encryption technique that combines chaotic systems and RSA encryption algorithm has been developed. The combination of RSA algorithm and chaotic systems makes encryption system.
Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer
International Nuclear Information System (INIS)
Kim, Hyung-Jin; Park, Jae-Won
2012-01-01
We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.
Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.
2005-04-01
Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.
International Nuclear Information System (INIS)
Munmuangsaen, Buncha; Srisuchinwong, Banlue
2011-01-01
Highlights: → Five new elementary chaotic snap flows and a generalization of an existing chaotic snap flow have been presented. → Three of all are conservative systems whilst three others are dissipative systems. → Four cases need only a single control parameter and a single nonlinearity. → A cubic case in a jerk representation requires only two terms and a single nonlinearity. - Abstract: Hyperjerk systems with 4th-order derivative of the form x .... =f(x ... ,x .. ,x . ,x) have been referred to as snap systems. Five new elementary chaotic snap flows and a generalization of an existing flow are presented through an extensive numerical search. Four of these flows demonstrate elegant simplicity of a single control parameter based on a single nonlinearity of a quadratic, a piecewise-linear or an exponential type. Two others demonstrate elegant simplicity of all unity-in-magnitude parameters based on either a single cubic nonlinearity or three cubic nonlinearities. The chaotic snap flow with a single cubic nonlinearity requires only two terms and can be transformed to its equivalent dynamical form of only five terms which have a single nonlinearity. An advantage is that such a chaotic flow offers only five terms even though the (four) dimension is high. Three of the chaotic snap flows are characterized as conservative systems whilst three others are dissipative systems. Basic dynamical properties are described.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuanyuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Huang, Jiamu, E-mail: huangjiamu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Claypool, James B.; Castano, Carlos E. [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O’Keefe, Matthew J., E-mail: mjokeefe@mst.edu [Materials Research Center, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)
2015-11-15
Highlights: • Crystalline CeO{sub 2} coatings are deposited on Al 2024-T3 alloys by magnetron sputtering. • The crystal size and internal stress both increased with the thickness of CeO{sub 2} coating. • The ∼210 nm thick coating has the highest adhesion strength to the Al alloy substrate. • The ∼900 nm thick coating increased the corrosion resistance two orders of magnitude. • CeO{sub 2} coatings provide good cathodic inhibition for Al alloys by acting as physical barriers. - Abstract: Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO{sub 2} target. The crystallite size of CeO{sub 2} coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO{sub 2} coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO{sub 2} coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.
Pei, Yan
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067
Directory of Open Access Journals (Sweden)
Yan Pei
2015-01-01
Full Text Available We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC algorithm, interactive chaotic evolution (ICE that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
Sharma, A.; Verheijen, M.A.; Wu, L.; Karwal, S.; Vandalon, V.; Knoops, H.C.M.; Sundaram, R.S.; Hofmann, J.P.; Kessels, W.M.M.; Bol, A.A.
2018-01-01
Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down
International Nuclear Information System (INIS)
Kim, H.; Detavenier, C.; Straten, O. van der; Rossnagel, S.M.; Kellock, A.J.; Park, D.-G.
2005-01-01
TaN x diffusion barriers with good barrier properties at subnanometer thickness were deposited by plasma-enhanced atomic layer deposition (PE-ALD) from pentakis(dimethylamino)Ta. Hydrogen and/or nitrogen plasma was used as reactants to produce TaN x thin films with a different nitrogen content. The film properties including the carbon and oxygen impurity content were affected by the nitrogen flow during the process. The deposited film has nanocrystalline grains with hydrogen-only plasma, while the amorphous structure was obtained for nitrogen plasma. The diffusion barrier properties of deposited TaN films for Cu interconnects have been studied by thermal stress test based on synchrotron x-ray diffraction. The results indicate that the PE-ALD TaN films are good diffusion barriers even at a small thickness as 0.6 nm. Better diffusion barrier properties were obtained for higher nitrogen content. Based on a diffusion kinetics analysis, the nanocrystalline microstructure of the films was responsible for the better diffusion barrier properties compared to polycrystalline PE-ALD TaN films deposited from TaCl 5
A simple chaotic delay differential equation
International Nuclear Information System (INIS)
Sprott, J.C.
2007-01-01
The simplest chaotic delay differential equation with a sinusoidal nonlinearity is described, including the route to chaos, Lyapunov exponent spectrum, and chaotic diffusion. It is prototypical of many other high-dimensional chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Alonso, J.L. [Dpto. de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, Av. de la Universidad s/n, Ed. Torrepinet, 03202, Elche, Alicante (Spain)], E-mail: j.l.alonso@umh.es; Ferrer, J.C. [Dpto. de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, Av. de la Universidad s/n, Ed. Torrepinet, 03202, Elche, Alicante (Spain); Cotarelo, M.A.; Montilla, F. [Dpto. de Quimica Fisica e Instituto Universitario de Materiales de Alicante, Apdo. de Correos 99, E-03080, Alicante (Spain); Fernandez de Avila, S. [Dpto. de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, Av. de la Universidad s/n, Ed. Torrepinet, 03202, Elche, Alicante (Spain)
2009-02-27
An experimental study about the influence of the thickness of electrochemically deposited polyaniline (PANI), used as hole-transporting layer, on the behaviour of polymer light emitting diodes is presented. Two sets of devices with a different conjugated polymer used as active layer were prepared. Poly(9-vinylcarbazole) was used for the first type of devices, whereas Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] was used for the second type. Each set consists of five polymeric diodes in which the hole-transporting layer has been varied. In one case of each set no layer was deposited, in other one a Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) layer was deposited, and in the rest of the diodes a different thickness of electrochemically deposited PANI was employed. The optic and electronic characterization of the devices show that controlling the thickness of the PANI hole transporting layer, both the maximum emission peak of the electroluminescence curves and the driving voltage could be tuned. Furthermore, an exponential behaviour has been demonstrated for the maximum intensity of the electroluminescence curves as a function of the applied excitation voltage between anode and cathode.
International Nuclear Information System (INIS)
Alonso, J.L.; Ferrer, J.C.; Cotarelo, M.A.; Montilla, F.; Fernandez de Avila, S.
2009-01-01
An experimental study about the influence of the thickness of electrochemically deposited polyaniline (PANI), used as hole-transporting layer, on the behaviour of polymer light emitting diodes is presented. Two sets of devices with a different conjugated polymer used as active layer were prepared. Poly(9-vinylcarbazole) was used for the first type of devices, whereas Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] was used for the second type. Each set consists of five polymeric diodes in which the hole-transporting layer has been varied. In one case of each set no layer was deposited, in other one a Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) layer was deposited, and in the rest of the diodes a different thickness of electrochemically deposited PANI was employed. The optic and electronic characterization of the devices show that controlling the thickness of the PANI hole transporting layer, both the maximum emission peak of the electroluminescence curves and the driving voltage could be tuned. Furthermore, an exponential behaviour has been demonstrated for the maximum intensity of the electroluminescence curves as a function of the applied excitation voltage between anode and cathode
Initial conditions for chaotic inflation
International Nuclear Information System (INIS)
Brandenberger, R.; Kung, J.; Feldman, H.
1991-01-01
In contrast to many other inflationary Universe models, chaotic inflation does not depend on fine tuning initial conditions. Within the context of linear perturbation theory, it is shown that chaotic inflation is stable towards both metric and matter perturbations. Neglecting gravitational perturbations, it is shown that chaotic inflation is an attractor in initial condition space. (orig.)
Applications of Chaotic Dynamics in Robotics
Directory of Open Access Journals (Sweden)
Xizhe Zang
2016-03-01
Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.
Halstensen, Maths; Arvoh, Benjamin Kaku; Amundsen, Lene; Hoffmann, Rainer
2012-01-01
Wax deposition in sub-sea oil producing pipelines is a concern to the oil producing companies. The deposition of wax in pipelines can cause serious economic implications if not monitored and controlled. Several researchers have developed models and investigated the deposition of wax in crude oil pipelines. As of today, there is no off the shelf instrument available for reliable online estimation of the wax depo- sition thickness in sub-sea pipelines. Acoustic chemometrics was applied to inves...
A new chaotic secure communication scheme
International Nuclear Information System (INIS)
Hua Changchun; Yang Bo; Ouyang Gaoxiang; Guan Xinping
2005-01-01
A new chaotic secure communication scheme is constructed. Unified chaotic system is used to encrypt the emitted signal. Different from the existing chaotic secure communication methods, the useful information is embodied in the parameter of chaotic systems in this Letter. The receiver is designed which can succeed in recovering the former signal. Finally computer simulations are done to verify the proposed methods, and the results show that the obtained theoretic results are feasible and efficient
International Nuclear Information System (INIS)
Wang Xing-Yuan; Bao Xue-Mei
2013-01-01
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)
Enhancement in (BHmax of PLD-made isotropic Nd-Fe-B thick film magnets deposited on Si substrates
Directory of Open Access Journals (Sweden)
M. Nakano
2017-05-01
Full Text Available Increase in Nd contents of a PLD-made isotropic Nd-Fe-B thick-film magnet enabled us to enhance the thickness of the film magnet deposited on a Si substrate because the linear expansion coefficient of Nd is an intermediate value between Nd2Fe14B and Si. The large amount of Nd, however, degraded the residual magnetic polarization and (BHmax. In the study, we reduced the Nd contents of each Nd-Fe-B film by inserting a Nd or a Nd-rich Nd-Fe-B buffer layer between a Nd-Fe-B film and a Si substrate in order to suppress the mechanical destruction together with the improvement in magnetic properties. It was found that the mechanical property of a Nd-Fe-B film comprising the Nd-Fe-B buffer layer in the thickness range from 10 to 60 μm was superior than that of a sample with the Nd buffer layer. Resultantly, an average (BHmax value of Nd-Fe-B films with each Nd-Fe-B buffer layer deposited on Si substrates could be enhanced by approximately 15 kJ/m3 compared to that of non-buffer-layered films.
Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.
The effects of two thick film deposition methods on tin dioxide gas sensor performance.
Bakrania, Smitesh D; Wooldridge, Margaret S
2009-01-01
This work demonstrates the variability in performance between SnO(2) thick film gas sensors prepared using two types of film deposition methods. SnO(2) powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 - 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis.
The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance
Directory of Open Access Journals (Sweden)
Smitesh D. Bakrania
2009-08-01
Full Text Available This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 ºC for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20, often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0 at an operating temperature of 330 ºC, low standard deviation to the sensor response (±0.35 and no signal hysteresis.
Pb(Zr,Ti)O3-Pb(Mn1/3Nb2/3)O3 piezoelectric thick films by aerosol deposition
International Nuclear Information System (INIS)
Ryu, Jungho; Choi, Jong-Jin; Hahn, Byung-Dong; Yoon, Woon-Ha; Lee, Byoung-Kuk; Choi, Joon Hwan; Park, Dong-Soo
2010-01-01
Piezoelectric thick films of Pb(Zr,Ti)O 3 -Pb(Mn 1/3 Nb 2/3 )O 3 (PZT-PMnN) with Zr:Ti ratios ranging from 0.45:0.55 to 0.60:0.40 were fabricated on a platinized silicon wafer by aerosol deposition (AD). All the films were deposited with a thickness of 10 μm with high density. By adding PMnN to 57:43 PZT, a dielectric constant as low as ∼660 was achieved while the effective piezoelectric constant was over 140 pC/N. PZT-PMnN with a Zr:Ti ratio of 57:43 thus showed a maximum piezoelectric voltage constant (g 33 ) of 23.8 x 10 -3 Vm/N and is a good candidate for high quality thick films for application to high-energy density or high sensitivity, piezoelectric energy harvesters and sensors.
Correlation control theory of chaotic laser systems
International Nuclear Information System (INIS)
Li Fuli.
1986-04-01
A novel control theory of chaotic systems is studied. The correlation functions are calculated and used as feedback signals of the chaotic lasers. Computer experiments have shown that in this way the chaotic systems can be controlled to have time-independent output when the external control parameters are in chaotic domain. (author)
Dynamic control of chaotic resonators
Di Falco, A.; Bruck, R.; Liu, C.; Muskens, O.; Fratalocchi, Andrea
2016-01-01
We report on the all-optical control of chaotic optical resonators based on silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behavior via intense optical pump- ing, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip. © 2016 SPIE.
Dynamic control of chaotic resonators
Di Falco, A.
2016-02-16
We report on the all-optical control of chaotic optical resonators based on silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behavior via intense optical pump- ing, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip. © 2016 SPIE.
A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps
International Nuclear Information System (INIS)
Behnia, S.; Akhshani, A.; Ahadpour, S.; Mahmodi, H.; Akhavan, A.
2007-01-01
In recent years, a growing number of discrete chaotic cryptographic algorithms have been proposed. However, most of them encounter some problems such as the lack of robustness and security. In this Letter, we introduce a new image encryption algorithm based on one-dimensional piecewise nonlinear chaotic maps. The system is a measurable dynamical system with an interesting property of being either ergodic or having stable period-one fixed point. They bifurcate from a stable single periodic state to chaotic one and vice versa without having usual period-doubling or period-n-tippling scenario. Also, we present the KS-entropy of this maps with respect to control parameter. This algorithm tries to improve the problem of failure of encryption such as small key space, encryption speed and level of security
Anti-synchronization between different chaotic complex systems
International Nuclear Information System (INIS)
Liu Ping; Liu Shutang
2011-01-01
Many studies on the anti-synchronization of nonlinear real dynamic systems have been carried out, whereas the anti-synchronization of chaotic complex systems has not been studied extensively. In this work, the anti-synchronization between a new chaotic complex system and a complex Lorenz system and that between a new chaotic complex system and a complex Lue system were separately investigated by active control and nonlinear control methods, and explicit expressions were derived for the controllers that are used to achieve the anti-synchronization of chaotic complex systems. These expressions were tested numerically and excellent agreement was found. Concerning the new chaotic complex system, we discuss its dynamical properties including dissipation, chaotic behavior, fixed points, and their stability and invariance.
Visibility graphlet approach to chaotic time series
Energy Technology Data Exchange (ETDEWEB)
Mutua, Stephen [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega (Kenya); Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn; Yang, Huijie, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)
2016-05-15
Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems. Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.
Zhang, Wenlei; Uesugi, Akio; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu
2017-06-01
This paper reports the tensile properties of single-crystal silicon (SCS) microstructures fully coated with sub-micrometer thick diamond like carbon (DLC) film using plasma enhanced chemical vapor deposition (PECVD). To minimize the deformations or damages caused by non-uniform coating of DLC, which has high compression residual stress, released SCS specimens with the dimensions of 120 µm long, 4 µm wide, and 5 µm thick were coated from the top and bottom side simultaneously. The thickness of DLC coating is around 150 nm and three different bias voltages were used for deposition. The tensile strength improved from 13.4 to 53.5% with the increasing of negative bias voltage. In addition, the deviation in strength also reduced significantly compared to bare SCS sample.
Energy Technology Data Exchange (ETDEWEB)
Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in
2015-09-30
Transparent conducting antimony doped SnO{sub 2} thin films with varying thickness were deposited by chemical spray pyrolysis technique from non-aqueous solvent Propan-2-ol. The effect of film thickness on the properties of antimony doped SnO{sub 2} thin films have been studied. X-ray diffraction measurements showed tetragonal crystal structure of as-deposited antimony doped SnO{sub 2} films irrespective of film thickness. The surface morphology of antimony doped SnO{sub 2} thin film is spherical with the continuous distribution of grains. Electrical and optical properties were investigated by Hall Effect and optical measurements. The average optical transmittance of films decreased from 89% to 73% within the visible range (350–850 nm) with increase in film thickness. The minimum value of sheet resistance observed is 4.81 Ω/cm{sup 2}. The lowest resistivity found is 3.76 × 10{sup −4} Ω cm at 660 nm film thickness. - Highlights: • Effect of film thickness on the properties of antimony doped SnO{sub 2} thin films • Crystalline size in the range of 34–37 nm • Average transmittance decreased from 89% to 73% in the visible region. • Minimum sheet resistance of 4.81 Ω/cm{sup 2} • Lowest resistivity is found to be 3.76 × 10{sup −4} Ω cm at 660 nm film thickness.
Deposition of SrTiO3 films by electrophoresis with thickness and particle size control
International Nuclear Information System (INIS)
Junior, W.D.M.; Pena, A.F.V.; Souza, A.E.; Santos, G.T.A.; Teixeira, S.R.; Senos, A.M.R.; Longo, E.
2012-01-01
The SrTiO3 (ST) is a material that exhibits semiconducting characteristics and interesting electrical properties. In room temperature has a structure of high cubic symmetry. The size of the crystallites of this material directly influences this symmetry, changing its network parameters. ST nanoparticles are obtained by hydrothermal method assisted by microwave (MAH). ST films are prepared by electrophoretic deposition (EPD). Approximately 1 g of the powder is dissolved in 100 ml of acetone and 1.5 ml of triethanolamine. The stainless steel substrates are arranged horizontally in the solution. The depositions are performed for 1-10 min and subjected to a potential difference of 20-100 V. The films were characterized by x-ray diffraction (XRD) and atomic force microscopy (AFM). The characterizations show that it is possible to control both the thickness and size of the crystallites of the film depending on the deposition parameters adopted. (author)
Robotic complex for the development of thick steeply-inclined coal seams and ore deposits
Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu
2017-09-01
Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.
Van Hao, B.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.
2012-01-01
This study reports on the growth and characterization of TiN thib films obtained by atomic layer deposition at 350-425 ◦C. We observe a growth of the continuous layers from the very beginning of the process, i.e. for a thickness of 0.65 nm, which is equivalent to 3 monolayers of TiN. The film growth
Modeling of Coupled Chaotic Oscillators
International Nuclear Information System (INIS)
Lai, Y.; Grebogi, C.
1999-01-01
Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. copyright 1999 The American Physical Society
Shishkanova, T V; Matejka, P; Král, V; Sedenková, I; Trchová, M; Stejskal, J
2008-08-29
Repeated depositions of polyaniline (PANI) have been used to control the thickness of the polymeric film deposited on poly(vinyl chloride) (PVC) membrane surface. The oxidation of aniline was carried out in a dispersion mode, i.e. in the presence of poly(N-vinylpyrrolidone) (PVP). Two kinds of PVC were used for this purpose: a non-plasticized PVC for the study of PANI deposition and PVC, plasticized with nitrophenyl octyl ether (NPOE), as a prototype of a liquid membrane electrode. The results of UV-visible and FTIR spectroscopies and electron microscopy showed that (1) the film thickness increased by about equal increments of approximately 40 nm after each polymerization, and (2) the interface with PVC was constituted by PANI film and adhering PANI-PVP colloidal particles. The various thicknesses of the deposited PANI films affected the potentiometric response of the NPOE/PVC membrane with and without an anion-exchanger. The potentiometric anionic response was observed with a minimal thickness of PANI film on the blank NPOE/PVC membrane. Sensitivity of the PANI film to pH occurred only with a blank NPOE/PVC membrane coated with a thick polymeric film, while it was strongly suppressed by the presence of a lipophilic anion-exchanger, tridodecylmethylammonium chloride (TDDMACl), in the membrane, regardless of the thickness of the polymer film. The thickness of the PANI film did not affect the anionic selectivity pattern of TDDMACl-based membranes to any great extent, but its presence improved and stabilized their potentiometric characteristics (sensitivity, linear-response range).
Studies in Chaotic adiabatic dynamics
International Nuclear Information System (INIS)
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)
Chaotic advection in the ocean
Energy Technology Data Exchange (ETDEWEB)
Koshel' , Konstantin V; Prants, Sergei V [V.I. Il' ichev Pacific Oceanological Institute, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok (Russian Federation)
2006-11-30
The problem of chaotic advection of passive scalars in the ocean and its topological, dynamical, and fractal properties are considered from the standpoint of the theory of dynamical systems. Analytic and numerical results on Lagrangian transport and mixing in kinematic and dynamic chaotic advection models are described for meandering jet currents, topographical eddies in a barotropic ocean, and a two-layer baroclinic ocean. Laboratory experiments on hydrodynamic flows in rotating tanks as an imitation of geophysical chaotic advection are described. Perspectives of a dynamical system approach in physical oceanography are discussed. (reviews of topical problems)
Characterizing chaotic melodies in automatic music composition
Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang
2010-09-01
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.
Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.
2014-12-01
The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-03-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)
2015-06-15
Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.
Thick Fe2O3, Fe3O4 films prepared by the chemical solution deposition method
Czech Academy of Sciences Publication Activity Database
Buršík, Josef; Košovan, P.; Šubrt, Jan
2006-01-01
Roč. 39, č. 2 (2006), s. 85-94 ISSN 0928-0707 R&D Projects: GA ČR GA203/01/0408 Institutional research plan: CEZ:AV0Z40320502 Keywords : chemical solution deposition * thick films * alpha-Fe2O3 Subject RIV: CA - Inorganic Chemistry Impact factor: 1.009, year: 2006
International Nuclear Information System (INIS)
Chien, T.-I; Hung, Y.-C.; Liao, T.-L.
2006-01-01
This paper presents a novel non-correlator-based digital communication system with the application of interleaved chaotic differential peaks keying (I-CDPK) modulation technique. The proposed communication system consists of four major modules: I-CDPK modulator (ICM), frequency modulation (FM) transmitter, FM receiver and I-CDPK demodulator (ICDM). In the ICM module, there are four components: a chaotic circuit to generate the chaotic signals, A/D converter, D/A converter and a digital processing mechanism to control all signal flows and performs I-CDPK modulation corresponding to the input digital bits. For interleaving every input digital bit set, every state of the chaotic system is used to represent one portion of it, but only a scalar state variable (i.e. the system output) is sent to the ICDM's chaotic circuit through both FM transmitter and FM receiver. An observer-based chaotic synchronization scheme is designed to synchronize the chaotic circuits of the ICM and ICDM. Meanwhile, the bit detector in ICDM is devoted to recover the transmitted input digital bits. Some numerical simulations of an illustrative communication system are given to demonstrate its theoretical effectiveness. Furthermore, the performance of bit error rate of the proposed system is analyzed and compared with those of the correlator-based communication systems adopting coherent binary phase shift keying (BPSK) and coherent differential chaotic shift keying (DCSK) schemes
Stochastic and Chaotic Relaxation Oscillations
Grasman, J.; Roerdink, J.B.T.M.
1988-01-01
For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a
Approximating chaotic saddles for delay differential equations.
Taylor, S Richard; Campbell, Sue Ann
2007-04-01
Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a "logistic" delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.
Approximating chaotic saddles for delay differential equations
Taylor, S. Richard; Campbell, Sue Ann
2007-04-01
Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.
New robust chaotic system with exponential quadratic term
International Nuclear Information System (INIS)
Bao Bocheng; Li Chunbiao; Liu Zhong; Xu Jianping
2008-01-01
This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller. (general)
Chaotic scattering and quantum dynamics
International Nuclear Information System (INIS)
Doron, Eyal.
1992-11-01
The main concern of this thesis is the application of the semiclassical approximation to quantum chaotic scattering systems. We deal with two separate, although interconnected, subjects. The first subject dealt with is the semiclassical characterization of the fluctuations of the S matrix. A particular important parameter is the magnetic field B, and we show how the correlation length and line shape of S matrix elements under a change of B may be derived. An effect which is present in many physical wave systems is absorption of energy flux. We show how absorption affects both the reflectivity and the scattering phase and time delay of a scattering system. In the second part of the thesis, we show how the formalism and results obtained from chaotic scattering can be applied to the investigation of closed chaotic systems, and in particular to chaotic billiards. The semiclassical expansion for billiards is presented. In the last part of the thesis we deal with the statistics of S matrices of chaotic scattering systems. The main message of this work is that scattering matrix, and its classical counterpart the Poincare Scattering Map can be used to yield a powerful formulation of the quantum mechanical dynamics of bounded systems. (author)
On dynamics analysis of a new chaotic attractor
International Nuclear Information System (INIS)
Zhou Wuneng; Xu Yuhua; Lu Hongqian; Pan Lin
2008-01-01
In this Letter, a new chaotic system is discussed. Some basic dynamical properties, such as Lyapunov exponents, Poincare mapping, fractal dimension, bifurcation diagram, continuous spectrum and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed in this Letter is a new chaotic system and deserves a further detailed investigation
Energy Technology Data Exchange (ETDEWEB)
Garzillo, Valerio; Grigutis, Robertas [Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100 Como (Italy); Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); LOA, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91762 Palaiseau (France); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)
2016-07-07
We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of the absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.
Hypogenetic chaotic jerk flows
International Nuclear Information System (INIS)
Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan
2016-01-01
Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications. - Highlights: • Hypogenetic chaotic jerk flows with incomplete feedback of amplitude or polarity are obtained. • Multistability of symmetric coexisting attractors from an asymmetric structure is found. • Some jerk systems have hidden attractors with respect to equilibria but have global attraction. • These chaotic jerk flows have the properties of amplitude control and phase reversal.
TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis
2007-01-01
A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...
Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.
Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K
2016-03-01
This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper.
Complex economic dynamics: Chaotic saddle, crisis and intermittency
International Nuclear Information System (INIS)
Chian, Abraham C.-L.; Rempel, Erico L.; Rogers, Colin
2006-01-01
Complex economic dynamics is studied by a forced oscillator model of business cycles. The technique of numerical modeling is applied to characterize the fundamental properties of complex economic systems which exhibit multiscale and multistability behaviors, as well as coexistence of order and chaos. In particular, we focus on the dynamics and structure of unstable periodic orbits and chaotic saddles within a periodic window of the bifurcation diagram, at the onset of a saddle-node bifurcation and of an attractor merging crisis, and in the chaotic regions associated with type-I intermittency and crisis-induced intermittency, in non-linear economic cycles. Inside a periodic window, chaotic saddles are responsible for the transient motion preceding convergence to a periodic or a chaotic attractor. The links between chaotic saddles, crisis and intermittency in complex economic dynamics are discussed. We show that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits located in the gap regions of chaotic saddles. Non-linear modeling of economic chaotic saddle, crisis and intermittency can improve our understanding of the dynamics of financial intermittency observed in stock market and foreign exchange market. Characterization of the complex dynamics of economic systems is a powerful tool for pattern recognition and forecasting of business and financial cycles, as well as for optimization of management strategy and decision technology
Fractional order control and synchronization of chaotic systems
Vaidyanathan, Sundarapandian; Ouannas, Adel
2017-01-01
The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional contro...
Chaotic interactions of self-replicating RNA.
Forst, C V
1996-03-01
A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Eigenfunctions in chaotic quantum systems
International Nuclear Information System (INIS)
Baecker, Arnd
2007-01-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
On synchronization of three chaotic systems
International Nuclear Information System (INIS)
Yan Jianping; Li Changpin
2005-01-01
In this paper, a simple but efficient method is applied to the synchronization of three chaotic systems, i.e., the chaotic Lorenz, Chua, and Chen systems. Numerical simulations show this method works very well
Hash function based on piecewise nonlinear chaotic map
International Nuclear Information System (INIS)
Akhavan, A.; Samsudin, A.; Akhshani, A.
2009-01-01
Chaos-based cryptography appeared recently in the early 1990s as an original application of nonlinear dynamics in the chaotic regime. In this paper, an algorithm for one-way hash function construction based on piecewise nonlinear chaotic map with a variant probability parameter is proposed. Also the proposed algorithm is an attempt to present a new chaotic hash function based on multithreaded programming. In this chaotic scheme, the message is connected to the chaotic map using probability parameter and other parameters of chaotic map such as control parameter and initial condition, so that the generated hash value is highly sensitive to the message. Simulation results indicate that the proposed algorithm presented several interesting features, such as high flexibility, good statistical properties, high key sensitivity and message sensitivity. These properties make the scheme a suitable choice for practical applications.
Chaotic Zones around Rotating Small Bodies
Energy Technology Data Exchange (ETDEWEB)
Lages, José; Shevchenko, Ivan I. [Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS, Université de Franche-Comté, Besançon F-25030 (France); Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr [Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse F-31062 (France)
2017-06-01
Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples of the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.
Palneedi, Haribabu; Maurya, Deepam; Geng, Liwei D; Song, Hyun-Cheol; Hwang, Geon-Tae; Peddigari, Mahesh; Annapureddy, Venkateswarlu; Song, Kyung; Oh, Yoon Seok; Yang, Su-Chul; Wang, Yu U; Priya, Shashank; Ryu, Jungho
2018-04-04
Enhanced and self-biased magnetoelectric (ME) coupling is demonstrated in a laminate heterostructure comprising 4 μm-thick Pb(Zr,Ti)O 3 (PZT) film deposited on 50 μm-thick flexible nickel (Ni) foil. A unique fabrication approach, combining room temperature deposition of PZT film by granule spray in vacuum (GSV) process and localized thermal treatment of the film by laser radiation, is utilized. This approach addresses the challenges in integrating ceramic films on metal substrates, which is often limited by the interfacial chemical reactions occurring at high processing temperatures. Laser-induced crystallinity improvement in the PZT thick film led to enhanced dielectric, ferroelectric, and magnetoelectric properties of the PZT/Ni composite. A high self-biased ME response on the order of 3.15 V/cm·Oe was obtained from the laser-annealed PZT/Ni film heterostructure. This value corresponds to a ∼2000% increment from the ME response (0.16 V/cm·Oe) measured from the as-deposited PZT/Ni sample. This result is also one of the highest reported values among similar ME composite systems. The tunability of self-biased ME coupling in PZT/Ni composite has been found to be related to the demagnetization field in Ni, strain mismatch between PZT and Ni, and flexural moment of the laminate structure. The phase-field model provides quantitative insight into these factors and illustrates their contributions toward the observed self-biased ME response. The results present a viable pathway toward designing and integrating ME components for a new generation of miniaturized tunable electronic devices.
Unstable periodic orbits and chaotic economic growth
International Nuclear Information System (INIS)
Ishiyama, K.; Saiki, Y.
2005-01-01
We numerically find many unstable periodic solutions embedded in a chaotic attractor in a macroeconomic growth cycle model of two countries with different fiscal policies, and we focus on a special type of the unstable periodic solutions. It is confirmed that chaotic behavior represented by the model is qualitatively and quantitatively related to the unstable periodic solutions. We point out that the structure of a chaotic solution is dissolved into a class of finite unstable periodic solutions picked out among a large number of periodic solutions. In this context it is essential for the unstable periodic solutions to be embedded in the chaotic attractor
Cryptography with chaotic mixing
International Nuclear Information System (INIS)
Oliveira, Luiz P.L. de; Sobottka, Marcelo
2008-01-01
We propose a cryptosystem based on one-dimensional chaotic maps of the form H p (x)=r p -1 0G0r p (x) defined in the interval [0, 10 p ) for a positive integer parameter p, where G(x)=10x(mod10) and r p (x)= p √(x), which is a topological conjugacy between G and the shift map σ on the space Σ of the sequences with 10 symbols. There are three advantages in comparison with the recently proposed cryptosystem based on chaotic logistic maps F μ (x)=μx(1-x) with 3 p is always chaotic for all parameters p, (b) the knowledge of an ergodic measure allows assignments of the alphabetic symbols to equiprobable sites of H p 's domain and (c) for each p, the security of the cryptosystem is manageable against brute force attacks
Qualitative feature extractions of chaotic systems
International Nuclear Information System (INIS)
Vicha, T.; Dohnal, M.
2008-01-01
The theory of chaos offers useful tools for systems analysis. However, models of complex systems are based on a network of inconsistent, space and uncertain knowledge items. Traditional quantitative methods of chaos analysis are therefore not applicable. The paper by the same authors [Vicha T, Dohnal M. Qualitative identification of chaotic systems behaviours. Chaos, Solitons and Fractals, in press, [Log. No. 601019] ] presents qualitative interpretation of some chaos concepts. There are only three qualitative values positive/increasing, negative/decreasing and zero/constant. It means that any set of qualitative multidimensional descriptions of unsteady state behaviours is discrete and finite. A finite upper limit exists for the total number of qualitatively distinguishable scenarios. A set of 21 published chaotic models is solved qualitatively and 21 sets of all existing qualitative scenarios are presented. The intersection of all 21 scenario sets is empty. There is no such a behaviour which is common for all 21 models. The set of 21 qualitative models (e.g. Lorenz, Roessler) can be used to compare chaotic behaviours of an unknown qualitative model with them to evaluate if its chaotic behaviours is close to e.g. Lorenz chaotic model and how much
Normal form and synchronization of strict-feedback chaotic systems
International Nuclear Information System (INIS)
Wang, Feng; Chen, Shihua; Yu Minghai; Wang Changping
2004-01-01
This study concerns the normal form and synchronization of strict-feedback chaotic systems. We prove that, any strict-feedback chaotic system can be rendered into a normal form with a invertible transform and then a design procedure to synchronize the normal form of a non-autonomous strict-feedback chaotic system is presented. This approach needs only a scalar driving signal to realize synchronization no matter how many dimensions the chaotic system contains. Furthermore, the Roessler chaotic system is taken as a concrete example to illustrate the procedure of designing without transforming a strict-feedback chaotic system into its normal form. Numerical simulations are also provided to show the effectiveness and feasibility of the developed methods
On the Design of Chaotic Oscillators
DEFF Research Database (Denmark)
Lindberg, Erik; Tamasevicius, A; Cenys, A.
1998-01-01
A discussion of the chaotic oscillator concept from a design methodology pointof view. The attributes of some chaoticoscillators are discussed and a systematicdesign method based on eigenvalue investigation is proposed. The method isillustrated with a chaotic Wien-bridgeoscillator design....
Synchronization of Time-Continuous Chaotic Oscillators
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik
2003-01-01
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...
Intermittent chaotic chimeras for coupled rotators
DEFF Research Database (Denmark)
Olmi, Simona; Martens, Erik Andreas; Thutupalli, Shashi
2015-01-01
Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other...
International Nuclear Information System (INIS)
Au, V; Charles, C; Boswell, R W
2006-01-01
The stress in a single-layer continuous deposition of amorphous silicon dioxide (SiO 2 ) film is compared with the stress within multiple-layer intermittent or 'stop-start' depositions. The films were deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) to a 1 μm total film thickness. The relationships for stress as a function of film thickness for single, two, four and eight layer depositions have been obtained by employing the substrate curvature technique on a post-deposition etch-back of the SiO 2 film. At film thicknesses of less than 300 nm, the stress-thickness relationships clearly show an increase in stress in the multiple-layer samples compared with the relationship for the single-layer film. By comparison, there is little variation in the film stress between the samples when it is measured at 1 μm film thickness. Localized variations in stress were not observed in the regions where the 'stop-start' depositions occurred. The experimental results are interpreted as a possible indication of the presence of unstable, strained Si-O-Si bonds in the amorphous SiO 2 film. It is proposed that the subsequent introduction of a 'stop-start' deposition process places additional strain on these bonds to affect the film structure. The experimental stress-thickness relationships were reproduced independently by assuming a linear relationship between the measured bow and film thickness. The constants of the linear model are interpreted as an indication of the density of the amorphous film structure
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Indirect adaptive control of discrete chaotic systems
International Nuclear Information System (INIS)
Salarieh, Hassan; Shahrokhi, Mohammad
2007-01-01
In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations
Optimized chaotic Brillouin dynamic grating with filtered optical feedback.
Zhang, Jianzhong; Li, Zhuping; Wu, Yuan; Zhang, Mingjiang; Liu, Yi; Li, Mengwen
2018-01-16
Chaotic Brillouin dynamic gratings (BDGs) have special advantages such as the creation of single, permanent and localized BDG. However, the periodic signals induced by conventional optical feedback (COF) in chaotic semiconductor lasers can lead to the generation of spurious BDGs, which will limit the application of chaotic BDGs. In this paper, filtered optical feedback (FOF) is proposed to eliminate spurious BDGs. By controlling the spectral width of the optical filter and its detuning from the laser frequency, semiconductor lasers with FOF operate in the suppression region of the time-delay signature, and chaotic outputs serving as pump waves are then utilized to generate the chaotic BDG in a polarization maintaining fiber. Through comparative analysis of the COF and FOF schemes, it has been demonstrated that spurious BDGs are effectively eliminated and that the reflection characterization of the chaotic BDG is improved. The influence of FOF on the reflection and gain spectra of the chaotic BDG is analyzed as well.
International Nuclear Information System (INIS)
Kawai, Y.
1991-08-01
It has recently been recognized that the research on various aspects of chaotic dynamics grows rapidly as one of some areas in nonlinear science. On the other hands, the plasma has long been called a treasure-house of nonlinear phenomena, so it is easy to imagine that the plasma is abundant in chaotic phenomena. In fact, the research on plasma chaos is going on, such as the research on the stochastic magnetic field and the chaotic orbit in the toroidal helical system, as well as the research in other experiments. To review the present status of the research on plasma chaos and to make clear the basic common physics, a working group was organized in 1990 as a collaboration research of National Institute for Fusion Science. This is the report on its activity in 1990, with a stress on experimental data obtained in basic plasma experiments and RFP, and on the relaxed theories and computer simulations. (author)
A time-delayed method for controlling chaotic maps
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2005-01-01
Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method
Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong
2018-05-01
The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.
Adaptive Synchronization of Memristor-based Chaotic Neural Systems
Directory of Open Access Journals (Sweden)
Xiaofang Hu
2014-11-01
Full Text Available Chaotic neural networks consisting of a great number of chaotic neurons are able to reproduce the rich dynamics observed in biological nervous systems. In recent years, the memristor has attracted much interest in the efficient implementation of artificial synapses and neurons. This work addresses adaptive synchronization of a class of memristor-based neural chaotic systems using a novel adaptive backstepping approach. A systematic design procedure is presented. Simulation results have demonstrated the effectiveness of the proposed adaptive synchronization method and its potential in practical application of memristive chaotic oscillators in secure communication.
Film thickness determination by grazing incidence diffraction
Energy Technology Data Exchange (ETDEWEB)
Battiston, G A; Gerbasi, R [CNR, Padua (Italy). Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati
1996-09-01
Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive.
Film thickness determination by grazing incidence diffraction
International Nuclear Information System (INIS)
Battiston, G. A.; Gerbasi, R.
1996-01-01
Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization
Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David
2017-01-01
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles’ search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles’ premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO. PMID:28472050
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.
Yan, Danping; Lu, Yongzhong; Zhou, Min; Chen, Shiping; Levy, David
2017-01-01
Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO), we herein propose a chaotic proportional integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA) and PSO.
Empirically characteristic analysis of chaotic PID controlling particle swarm optimization.
Directory of Open Access Journals (Sweden)
Danping Yan
Full Text Available Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions, topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic orbits to achieve the global optimum or their better approximation to given cost functions with high probability. During the past decade, they have increasingly received much attention from academic community and industry society throughout the world. To improve the performance of particle swarm optimization (PSO, we herein propose a chaotic proportional integral derivative (PID controlling PSO algorithm by the hybridization of chaotic logistic dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are determined in accordance with the present fitness values of the local best positions so as to adaptively expand the particles' search space. Moreover, the chaotic logistic map is not only used in the substitution of the two random parameters affecting the convergence behavior, but also used in the chaotic local search for the global best position so as to easily avoid the particles' premature behaviors via the whole search space. Thereafter, the convergent analysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic map, chaotic PID controlling PSO exhibits much better search efficiency and quality when solving the optimization problems. Additionally, the parameter estimation of a nonlinear dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm (GA and PSO.
Synchronization of two different chaotic systems via nonlinear ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: This work reports the synchronization of a pair of four chaotic systems via nonlinear control technique. This method has been found to be easy to implement and effective especially on two different chaotic systems. We paired four chaotic systems out of which one is new and we have six possible pairs.
Video encryption using chaotic masks in joint transform correlator
Saini, Nirmala; Sinha, Aloka
2015-03-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.
Video encryption using chaotic masks in joint transform correlator
International Nuclear Information System (INIS)
Saini, Nirmala; Sinha, Aloka
2015-01-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest–Shamir–Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique. (paper)
Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition
DEFF Research Database (Denmark)
Purwins, Hendrik; Barak, Bernd; Nagi, Ahmed
2014-01-01
The quality of wafer production in semiconductor manufacturing cannot always be monitored by a costly physical measurement. Instead of measuring a quantity directly, it can be predicted by a regression method (Virtual Metrology). In this paper, a survey on regression methods is given to predict...... average Silicon Nitride cap layer thickness for the Plasma Enhanced Chemical Vapor Deposition (PECVD) dual-layer metal passivation stack process. Process and production equipment Fault Detection and Classification (FDC) data are used as predictor variables. Various variable sets are compared: one most...... algorithm, and Support Vector Regression (SVR). On a test set, SVR outperforms the other methods by a large margin, being more robust towards changes in the production conditions. The method performs better on high-dimensional multivariate input data than on the most predictive variables alone. Process...
Anti-synchronization of chaotic oscillators
International Nuclear Information System (INIS)
Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Ryu, Jung-Wan; Park, Young-Jai
2003-01-01
We have observed anti-synchronization phenomena in coupled identical chaotic oscillators. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. We have qualitatively analyzed its base mechanism by using the dynamics of the difference and the sum of the relevant variables in coupled chaotic oscillators. Near the threshold of the synchronization and anti-synchronization transition, we have obtained the novel characteristic relation
Mixing enhancement and transport reduction in chaotic advection
Benzekri , Tounsia; Chandre , Cristel; Leoncini , Xavier; Lima , Ricardo; Vittot , Michel
2005-01-01
We present a method for reducing chaotic transport in a model of chaotic advection due to time-periodic forcing of an oscillating vortex chain. We show that by a suitable modification of this forcing, the modified model combines two effects: enhancement of mixing within the rolls and suppression of chaotic transport along the channel.
Theory and practice of chaotic cryptography
International Nuclear Information System (INIS)
Amigo, J.M.; Kocarev, L.; Szczepanski, J.
2007-01-01
In this Letter we address some basic questions about chaotic cryptography, not least the very definition of chaos in discrete systems. We propose a conceptual framework and illustrate it with different examples from private and public key cryptography. We elaborate also on possible limits of chaotic cryptography
International Nuclear Information System (INIS)
Schaefer, Mirko
2011-01-01
The main topic of this thesis is the investigation of dynamical properties of coupled Tchebycheff map networks. The results give insights into the chaotic string model and its network generalization from a dynamical point of view. As a first approach, discrete symmetry transformations of the model are studied. These transformations are formulated in a general way in order to be also applicable to similar dynamics on bipartite network structures. The dynamics is studied numerically via Lyapunov measures, spatial correlations, and ergodic properties. It is shown that the zeros of the interaction energy are distinguished only with respect to this specific observable, but not by a more general dynamical principle. The original chaotic string model is defined on a one-dimensional lattice (ring-network) as the underlying network topology. This thesis studies a modification of the model based on the introduction of tunable disorder. The effects of inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure on the interaction energy are discussed. Synchronization properties of the chaotic string model and its network generalization are studied in later chapters of this thesis. The analysis is based on the master stability formalism, which relates the stability of the synchronized state to the spectral properties of the network. Apart from complete synchronization, where the dynamics at all nodes of the network coincide, also two-cluster synchronization on bipartite networks is studied. For both types of synchronization it is shown that depending on the type of coupling the synchronized dynamics can display chaotic as well as periodic or quasi-periodic behaviour. The semi-analytical calculations reveal that the respective synchronized states are often stable for a wide range of coupling values even for the ring-network, although the respective basins of attraction may inhabit only a small fraction of the phase space. To provide
International Nuclear Information System (INIS)
Fukunaga, H.; Nakano, M.; Yanai, T.; Kamikawatoko, T.; Yamashita, F.
2011-01-01
The effects of varying the laser power and the spot diameter of a laser beam on the magnetic properties, morphology, and deposition rate of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition (PLD) were investigated. Reducing the laser fluence on the target reduces the remanence and increases the Nd content and consequently the coercivity of the prepared films. The spot size of the laser beam was found to affect the film surface morphology, the deposition rate, and the reproducibility of the magnetic properties of the prepared films. Reducing the spot size reduces the number of droplets and the reproducibility of the magnetic properties and increases the droplet size. Controlling the spot size of the laser beam enabled us to maximize the deposition rate. Consequently, a coercivity of 1210 kA/m and a remanence of 0.51 T were obtained at a deposition rate of 11.8 μm/(h·W). This deposition rate is 30% greater than the highest previously reported deposition rate by PLD.
Robust synchronization of chaotic systems via feedback
Energy Technology Data Exchange (ETDEWEB)
Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion
2008-07-01
This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)
Chaotic correlations in barrier billiards with arbitrary barriers
International Nuclear Information System (INIS)
Osbaldestin, A H; Adamson, L N C
2013-01-01
We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)
Image Encryption and Chaotic Cellular Neural Network
Peng, Jun; Zhang, Du
Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.
National Research Council Canada - National Science Library
Tam, Simon
2001-01-01
...) solid from its infrared (IR) absorption spectrum. Millimeters-thick pH2 solids of exceptional optical clarity can be produced by the rapid vapor deposition method M.E. Fajardo and S. Tam, J. Chem. Phys. 108, 4237 (1998...
Chaotic wave trains in an oscillatory/excitable medium
International Nuclear Information System (INIS)
Rabinovitch, A.; Gutman, M.; Biton, Y.; Aviram, I.
2006-01-01
We study the chaotic dynamics of a heterogeneous reaction-diffusion medium composed of two uniform regions: one oscillatory, and the other excitable. It is shown that, by altering the diffusion coefficient, local chaotic oscillations can be induced at the interface between regions, which in turn, generate different chaotic sequences of pulses traveling in the excitable region. We analyze the properties of the local chaotic driver, as well as the diffusion-induced transitions. A procedure based on the abnormal frequency-locking phenomenon is proposed for controlling such sequences. Relevance of the obtained results to cardiac dynamics is briefly discussed
Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves
Lilienkamp, Thomas; Christoph, Jan; Parlitz, Ulrich
2017-08-01
In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but transient. Using extensive simulations employing different mathematical models we identify a specific type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D, simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness. Finally, potential implications for understanding cardiac arrhythmias are discussed.
International Nuclear Information System (INIS)
Saidin, M.A.R.; Ismail, A.F.; Sanip, S.M.; Goh, P.S.; Aziz, M.; Tanemura, M.
2012-01-01
The characteristics of carbon nanofibers (CNFs) grown, using direct current plasma enhanced chemical vapor deposition system reactor under various acetylene to ammonia gas ratios and different catalyst thicknesses were studied. Nickel/Chromium-glass (Ni/Cr-glass) thin film catalyst was employed for the growth of CNF. The grown CNFs were then characterized using Raman spectroscopy, field emission scanning electron microscopy and transmission electron microscopy (TEM). Raman spectroscopy showed that the Ni/Cr-glass with thickness of 15 nm and gas ratio acetylene to ammonia of 1:3 produced CNFs with the lowest I D /I G value (the relative intensity of D-band to G-band). This indicated that this catalyst thickness and gas ratio value is the optimum combination for the synthesis of CNFs under the conditions studied. TEM observation pointed out that the CNFs produced have 104 concentric walls and the residual catalyst particles were located inside the tubes of CNFs. It was also observed that structural morphology of the grown CNFs was influenced by acetylene to ammonia gas ratio and catalyst thickness.
Energy Technology Data Exchange (ETDEWEB)
Saidin, M.A.R. [Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ismail, A.F., E-mail: afauzi@utm.my [Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sanip, S.M.; Goh, P.S.; Aziz, M. [Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Tanemura, M. [Department of Frontier Material, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)
2012-01-31
The characteristics of carbon nanofibers (CNFs) grown, using direct current plasma enhanced chemical vapor deposition system reactor under various acetylene to ammonia gas ratios and different catalyst thicknesses were studied. Nickel/Chromium-glass (Ni/Cr-glass) thin film catalyst was employed for the growth of CNF. The grown CNFs were then characterized using Raman spectroscopy, field emission scanning electron microscopy and transmission electron microscopy (TEM). Raman spectroscopy showed that the Ni/Cr-glass with thickness of 15 nm and gas ratio acetylene to ammonia of 1:3 produced CNFs with the lowest I{sub D}/I{sub G} value (the relative intensity of D-band to G-band). This indicated that this catalyst thickness and gas ratio value is the optimum combination for the synthesis of CNFs under the conditions studied. TEM observation pointed out that the CNFs produced have 104 concentric walls and the residual catalyst particles were located inside the tubes of CNFs. It was also observed that structural morphology of the grown CNFs was influenced by acetylene to ammonia gas ratio and catalyst thickness.
Wang, Xing; Liu, Hongxia; Zhao, Lu; Fei, Chenxi; Feng, Xingyao; Chen, Shupeng; Wang, Yongte
2017-12-01
La 2 O 3 films were grown on Si substrates by atomic layer deposition technique with different thickness. Crystallization characteristics of the La 2 O 3 films were analyzed by grazing incidence X-ray diffraction after post-deposition rapid thermal annealing treatments at several annealing temperatures. It was found that the crystallization behaviors of the La 2 O 3 films are affected by the film thickness and annealing temperatures as a relationship with the diffusion of Si substrate. Compared with the amorphous La 2 O 3 films, the crystallized films were observed to be more unstable due to the hygroscopicity of La 2 O 3 . Besides, the impacts of crystallization characteristics on the bandgap and refractive index of the La 2 O 3 films were also investigated by X-ray photoelectron spectroscopy and spectroscopic ellipsometry, respectively.
Development and evaluation of a long-term deposit probe for on-line monitoring of deposit growth
Energy Technology Data Exchange (ETDEWEB)
Brink, Anders; Lauren, Tor; Yrjas, Patrik; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, FI-20540 Turku (Finland); Friesenbichler, Joachim [Institute for Resource Efficient and Sustainable Systems, Technical University Graz Inffeldg. 21b, A-8010 Graz (Austria)
2007-12-15
A newly designed air-cooled probe for on-line monitoring of deposition growth has been tested in a boiler firing three woody fuels. Thermocouples are mounted on both sides of the tube wall enabling measurements of the heat flux through the probe wall. Knowing the heat flux through the probe wall, it is possible to measure the additional heat transfer resistance caused by the deposit and to estimate the properties of the deposit. Calculating the deposit thickness using the collected temperature data indicated the thinnest deposit when wood was fired, followed by bark and waste wood. The calculated deposit thickness was larger than those found when analysing the deposit thickness after the probe had been removed. Nevertheless, the ranking of fuels by deposit build-up rate was the same. (author)
Implementation of chaotic secure communication systems based on OPA circuits
International Nuclear Information System (INIS)
Huang, C.-K.; Tsay, S.-C.; Wu, Y.-R.
2005-01-01
In this paper, we proposed a novel three-order autonomous circuit to construct a chaotic circuit with double scroll characteristic. The design idea is to use RLC elements and a nonlinear resistor. The one of salient features of the chaotic circuit is that the circuit with two flexible breakpoints of nonlinear element, and the advantage of the flexible breakpoint is that it increased complexity of the dynamical performance. Here, if we take a large and suitable breakpoint value, then the chaotic state can masking a large input signal in the circuit. Furthermore, we proposed a secure communication hyperchaotic system based on the proposed chaotic circuits, where the chaotic communication system is constituted by a chaotic transmitter and a chaotic receiver. To achieve the synchronization between the transmitter and the receiver, we are using a suitable Lyapunov function and Lyapunov theorem to design the feedback control gain. Thus, the transmitting message masked by chaotic state in the transmitter can be guaranteed to perfectly recover in the receiver. To achieve the systems performance, some basic components containing OPA, resistor and capacitor elements are used to implement the proposed communication scheme. From the viewpoints of circuit implementation, this proposed chaotic circuit is superior to the Chua chaotic circuits. Finally, the test results containing simulation and the circuit measurement are shown to demonstrate that the proposed method is correct and feasible
Chaotic behavior learning of Chua's circuit
International Nuclear Information System (INIS)
Sun Jian-Cheng
2012-01-01
Least-square support vector machines (LS-SVM) are applied for learning the chaotic behavior of Chua's circuit. The system is divided into three multiple-input single-output (MISO) structures and the LS-SVM are trained individually. Comparing with classical approaches, the proposed one reduces the structural complexity and the selection of parameters is avoided. Some parameters of the attractor are used to compare the chaotic behavior of the reconstructed and the original systems for model validation. Results show that the LS-SVM combined with the MISO can be trained to identify the underlying link among Chua's circuit state variables, and exhibit the chaotic attractors under the autonomous working mode
International Nuclear Information System (INIS)
Ghobadi, Amir; Yavuz, Halil I.; Ulusoy, T. Gamze; Icli, K. Cagatay; Ozenbas, Macit; Okyay, Ali K.
2015-01-01
In this paper, the effect of angstrom-thick atomic layer deposited (ALD) ZnO embedded layer on photovoltaic (PV) performance of Nanowire-Based All-TiO 2 solar cells has been systematically investigated. Our results indicate that by varying the thickness of ZnO layer the efficiency of the solar cell can be significantly changed. It is shown that the efficiency has its maximum for optimal thickness of 1 ALD cycle in which this ultrathin ZnO layer improves device performance through passivation of surface traps without hampering injection efficiency of photogenerated electrons. The mechanisms contributing to this unprecedented change in PV performance of the cell have been scrutinized and discussed
A novel one equilibrium hyper-chaotic system generated upon Lü attractor
International Nuclear Information System (INIS)
Hong-Yan, Jia; Zeng-Qiang, Chen; Zhu-Zhi, Yuan
2010-01-01
By introducing an additional state feedback into a three-dimensional autonomous chaotic attractor Lü system, this paper presents a novel four-dimensional continuous autonomous hyper-chaotic system which has only one equilibrium. There are only 8 terms in all four equations of the new hyper-chaotic system, which may be less than any other four-dimensional continuous autonomous hyper-chaotic systems generated by three-dimensional (3D) continuous autonomous chaotic systems. The hyper-chaotic system undergoes Hopf bifurcation when parameter c varies, and becomes the 3D modified Lü system when parameter k varies. Although the hyper-chaotic system does not undergo Hopf bifurcation when parameter k varies, many dynamic behaviours such as periodic attractor, quasi periodic attractor, chaotic attractor and hyper-chaotic attractor can be observed. A circuit is also designed when parameter k varies and the results of the circuit experiment are in good agreement with those of simulation. (general)
Design of the Chaotic Signal Generator Based on LABVIEW
Directory of Open Access Journals (Sweden)
Jian-Guo Zhang
2014-01-01
Full Text Available We introduces a new method that can achieve the generation of Colpitts chaotic signal The system is based on virtual instrument platform and combined with MATLAB calculation to achieve the generation of Colpitts chaotic signal and making it analysis with autocorrelation and power spectrum at the same time. Signal channel output of chaotic signal was realized through USB-6009 acquisition module extending DA5405 high-speed DAC (Digital-to-Analog Converter chip. The system can adjust parameters based on customers’ requirements to achieve different frequency chaotic signal generation. Compared with the traditional autonomy Colpitts chaotic signal generator, this generator is simple and clear in structure, simple to operate, strong stability, easy to achieve etc.
A New Simple Chaotic Circuit Based on Memristor
Wu, Renping; Wang, Chunhua
In this paper, a new memristor is proposed, and then an emulator built from off-the-shelf solid state components imitating the behavior of the proposed memristor is presented. Multisim simulation and breadboard experiment are done on the emulator, exhibiting a pinched hysteresis loop in the voltage-current plane when the emulator is driven by a periodic excitation voltage. In addition, a new simple chaotic circuit is designed by using the proposed memristor and other circuit elements. It is exciting that this circuit with only a linear negative resistor, a capacitor, an inductor and a memristor can generate a chaotic attractor. The dynamical behaviors of the proposed chaotic system are analyzed by Lyapunov exponents, phase portraits and bifurcation diagrams. Finally, an electronic circuit is designed to implement the chaotic system. For the sake of simple circuit topology, the proposed chaotic circuit can be easily manufactured at low cost.
Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes
Directory of Open Access Journals (Sweden)
Soojun Kim
2015-01-01
Full Text Available The aim of this study is to identify and evaluate chaotic behavior in hydro-meteorological processes. This study poses the two hypotheses to identify chaotic behavior of the processes. First, assume that the input data is the significant factor to provide chaotic characteristics to output data. Second, assume that the system itself is the significant factor to provide chaotic characteristics to output data. For solving this issue, hydro-meteorological time series such as precipitation, air temperature, discharge, and storage volume were collected in the Great Salt Lake and Bear River Basin, USA. The time series in the period of approximately one year were extracted from the original series using the wavelet transform. The generated time series from summation of sine functions were fitted to each series and used for investigating the hypotheses. Then artificial neural networks had been built for modeling the reservoir system and the correlation dimension was analyzed for the evaluation of chaotic behavior between inputs and outputs. From the results, we found that the chaotic characteristic of the storage volume which is output is likely a byproduct of the chaotic behavior of the reservoir system itself rather than that of the input data.
The chaotic dynamical aperture
International Nuclear Information System (INIS)
Lee, S.Y.; Tepikian, S.
1985-01-01
Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipoles should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles
Composing chaotic music from the letter m
Sotiropoulos, Anastasios D.
Chaotic music is composed from a proposed iterative map depicting the letter m, relating the pitch, duration and loudness of successive steps. Each of the two curves of the letter m is based on the classical logistic map. Thus, the generating map is xn+1 = r xn(1/2 - xn) for xn between 0 and 1/2 defining the first curve, and xn+1 = r (xn - 1/2)(1 - xn) for xn between 1/2 and 1 representing the second curve. The parameter r which determines the height(s) of the letter m varies from 2 to 16, the latter value ensuring fully developed chaotic solutions for the whole letter m; r = 8 yielding full chaotic solutions only for its first curve. The m-model yields fixed points, bifurcation points and chaotic regions for each separate curve, as well as values of the parameter r greater than 8 which produce inter-fixed points, inter-bifurcation points and inter-chaotic regions from the interplay of the two curves. Based on this, music is composed from mapping the m- recurrence model solutions onto actual notes. The resulting musical score strongly depends on the sequence of notes chosen by the composer to define the musical range corresponding to the range of the chaotic mathematical solutions x from 0 to 1. Here, two musical ranges are used; one is the middle chromatic scale and the other is the seven- octaves range. At the composer's will and, for aesthetics, within the same composition, notes can be the outcome of different values of r and/or shifted in any octave. Compositions with endings of non-repeating note patterns result from values of r in the m-model that do not produce bifurcations. Scores of chaotic music composed from the m-model and the classical logistic model are presented.
Economic dispatch using chaotic bat algorithm
International Nuclear Information System (INIS)
Adarsh, B.R.; Raghunathan, T.; Jayabarathi, T.; Yang, Xin-She
2016-01-01
This paper presents the application of a new metaheuristic optimization algorithm, the chaotic bat algorithm for solving the economic dispatch problem involving a number of equality and inequality constraints such as power balance, prohibited operating zones and ramp rate limits. Transmission losses and multiple fuel options are also considered for some problems. The chaotic bat algorithm, a variant of the basic bat algorithm, is obtained by incorporating chaotic sequences to enhance its performance. Five different example problems comprising 6, 13, 20, 40 and 160 generating units are solved to demonstrate the effectiveness of the algorithm. The algorithm requires little tuning by the user, and the results obtained show that it either outperforms or compares favorably with several existing techniques reported in literature. - Highlights: • The chaotic bat algorithm, a new metaheuristic optimization algorithm has been used. • The problem solved – the economic dispatch problem – is nonlinear, discontinuous. • It has number of equality and inequality constraints. • The algorithm has been demonstrated to be applicable on high dimensional problems.
Encryption in Chaotic Systems with Sinusoidal Excitations
Directory of Open Access Journals (Sweden)
G. Obregón-Pulido
2014-01-01
Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.
Nelson, C.H.; Twichell, D.C.; Schwab, W.C.; Lee, H.J.; Kenyon, Neil H.
1992-01-01
Cores from a Mississippi outer-fan depositional lobe demonstrate that sublobes at the distal edge contain a complex local network of channelized-turbidite beds of graded sand and debris-flow beds of chaotic silt. Off-lobe basin plains lack siliciclastic coarse-grained beds. The basin-plain mud facies exhibit low acoustic backscatter on SeaMARC IA sidescan sonar images, whereas high acoustic backscatter characteristic of the lobe sand and silt facies. The depth of the first sand-silt layer correlates with relative backscatter intensity and stratigraphic age of the distal sublobes (i.e., shallowest sand = highest backscatter and youngest sublobe). The high proportion (>50%) of chaotic silt compared to graded sand in the distal, outer-fan sublobes may be related to the unstable, muddy, canyon-wall source areas of the extensive Mississippi delta-fed basin slope. A predominace of chaotic silt in cores or outcrops from outer-fan lobes thus may predict similar settings for ancient fans.
Parametric Control on Fractional-Order Response for Lü Chaotic System
Moaddy, K; Radwan, A G; Salama, Khaled N.; Momani, S; Hashim, I
2013-01-01
This paper discusses the influence of the fractional order parameter on conventional chaotic systems. These fractional-order parameters increase the system degree of freedom allowing it to enter new domains and thus it can be used as a control for such dynamical systems. This paper investigates the behaviour of the equally-fractional-order Lü chaotic system when changing the fractional-order parameter and determines the fractional-order ranges for chaotic behaviour. Five different parameter values and six fractional-order cases are discussed through this paper. Unlike the conventional parameters, as the fractional-order increases the system response begins with stability, passing by chaotic behaviour then reaches periodic response. As the system parameter α increases, a shift in the fractional order is required to maintain chaotic response.Therefore, the range of chaotic response can be expanded or minimized by controlling the fractional-order parameter. The non-standard finite difference method is used to solve the fractional-order Lü chaotic system numerically to validate these responses.
Parametric Control on Fractional-Order Response for Lü Chaotic System
Moaddy, K
2013-04-10
This paper discusses the influence of the fractional order parameter on conventional chaotic systems. These fractional-order parameters increase the system degree of freedom allowing it to enter new domains and thus it can be used as a control for such dynamical systems. This paper investigates the behaviour of the equally-fractional-order Lü chaotic system when changing the fractional-order parameter and determines the fractional-order ranges for chaotic behaviour. Five different parameter values and six fractional-order cases are discussed through this paper. Unlike the conventional parameters, as the fractional-order increases the system response begins with stability, passing by chaotic behaviour then reaches periodic response. As the system parameter α increases, a shift in the fractional order is required to maintain chaotic response.Therefore, the range of chaotic response can be expanded or minimized by controlling the fractional-order parameter. The non-standard finite difference method is used to solve the fractional-order Lü chaotic system numerically to validate these responses.
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Nuclear friction and chaotic motion
International Nuclear Information System (INIS)
Srokowski, T.; Szczurek, A.; Drozdz, S.
1990-01-01
The concept of nuclear friction is considered from the point of view of regular versus chaotic motion in an atomic nucleus. Using a realistic nuclear Hamiltonian it is explicitly shown that the frictional description of the gross features of nuclear collisions is adequate if the system behaves chaotically. Because of the core in the Hamiltonian, the three-body nuclear system already reveals a structure of the phase space rich enough for this concept to be applicable
Chaotic diagonal recurrent neural network
International Nuclear Information System (INIS)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
Chaotic secure communication based on strong tracking filtering
International Nuclear Information System (INIS)
Li Xiongjie; Xu Zhengguo; Zhou Donghua
2008-01-01
A scheme for implementing secure communication based on chaotic maps and strong tracking filter (STF) is presented, and a modified STF algorithm with message estimation is developed for the special requirement of chaotic secure communication. At the emitter, the message symbol is modulated by chaotic mapping and is output through a nonlinear function. At the receiver, the driving signal is received and the message symbol is recovered dynamically by the STF with estimation of message symbol. Simulation results of Holmes map demonstrate that when message symbols are binary codes, STF can effectively recover the codes of the message from the noisy chaotic signals. Compared with the extended Kalman filter (EKF), STF has a lower bit error rate
A new transiently chaotic flow with ellipsoid equilibria
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
A novel 3D autonomous system with different multilayer chaotic attractors
International Nuclear Information System (INIS)
Dong Gaogao; Du Ruijin; Tian Lixin; Jia Qiang
2009-01-01
This Letter proposes a novel three-dimensional autonomous system which has complex chaotic dynamics behaviors and gives analysis of novel system. More importantly, the novel system can generate three-layer chaotic attractor, four-layer chaotic attractor, five-layer chaotic attractor, multilayer chaotic attractor by choosing different parameters and initial condition. We analyze the new system by means of phase portraits, Lyapunov exponent spectrum, fractional dimension, bifurcation diagram and Poincare maps of the system. The three-dimensional autonomous system is totally different from the well-known systems in previous work. The new multilayer chaotic attractors are also worth causing attention.
On periodic and chaotic regions in the Mandelbrot set
International Nuclear Information System (INIS)
Pastor, G.; Romera, M.; Alvarez, G.; Arroyo, D.; Montoya, F.
2007-01-01
We show here in a graphic and simple way the relation between the periodic and chaotic regions in the Mandelbrot set. Since the relation between the periodic and chaotic regions in a one-dimensional (1D) quadratic set is already well known, we shall base on it to extend the results to the Mandelbrot set. We shall see that in the same way as the hyperbolic components of the period-doubling cascade determines the chaotic bands structure in 1D quadratic sets, the periodic region determines the chaotic region in the Mandelbrot set
Coexisting chaotic attractors in a single neuron model with adapting feedback synapse
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong
2005-01-01
In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra
Chaotic signals in digital communications
Eisencraft, Marcio; Suyama, Ricardo
2013-01-01
Chaotic Signals in Digital Communications combines fundamental background knowledge with state-of-the-art methods for using chaotic signals and systems in digital communications. The book builds a bridge between theoretical works and practical implementation to help researchers attain consistent performance in realistic environments. It shows the possible shortcomings of the chaos-based communication systems proposed in the literature, particularly when they are subjected to non-ideal conditions. It also presents a toolbox of techniques for researchers working to actually implement such system
Hoffheins, Barbara S.; Lauf, Robert J.
1995-01-01
A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Secure Image Encryption Based On a Chua Chaotic Noise Generator
Directory of Open Access Journals (Sweden)
A. S. Andreatos
2013-10-01
Full Text Available This paper presents a secure image cryptography telecom system based on a Chua's circuit chaotic noise generator. A chaotic system based on synchronised Master–Slave Chua's circuits has been used as a chaotic true random number generator (CTRNG. Chaotic systems present unpredictable and complex behaviour. This characteristic, together with the dependence on the initial conditions as well as the tolerance of the circuit components, make CTRNGs ideal for cryptography. In the proposed system, the transmitter mixes an input image with chaotic noise produced by a CTRNG. Using thresholding techniques, the chaotic signal is converted to a true random bit sequence. The receiver must be able to reproduce exactly the same chaotic noise in order to subtract it from the received signal. This becomes possible with synchronisation between the two Chua's circuits: through the use of specific techniques, the trajectory of the Slave chaotic system can be bound to that of the Master circuit producing (almost identical behaviour. Additional blocks have been used in order to make the system highly parameterisable and robust against common attacks. The whole system is simulated in Matlab. Simulation results demonstrate satisfactory performance, as well as, robustness against cryptanalysis. The system works with both greyscale and colour jpg images.
Lyapunov-Based Controller for a Class of Stochastic Chaotic Systems
Directory of Open Access Journals (Sweden)
Hossein Shokouhi-Nejad
2014-01-01
Full Text Available This study presents a general control law based on Lyapunov’s direct method for a group of well-known stochastic chaotic systems. Since real chaotic systems have undesired random-like behaviors which have also been deteriorated by environmental noise, chaotic systems are modeled by exciting a deterministic chaotic system with a white noise obtained from derivative of Wiener process which eventually generates an Ito differential equation. Proposed controller not only can asymptotically stabilize these systems in mean-square sense against their undesired intrinsic properties, but also exhibits good transient response. Simulation results highlight effectiveness and feasibility of proposed controller in outperforming stochastic chaotic systems.
The Smallest Transistor-Based Nonautonomous Chaotic Circuit
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, Arunas
2005-01-01
A nonautonomous chaotic circuit based on one transistor, two capacitors, and two resistors is described. The mechanism behind the chaotic performance is based on “disturbance of integration.” The forward part and the reverse part of the bipolar transistor are “fighting” about the charging...
International Nuclear Information System (INIS)
Kim, Hyung-Jun; Kim, Yoon-Hyun; Nam, Song-Min; Yoon, Young-Joon; Kim, Jong-Hee
2010-01-01
Low-temperature fabrication of Al 2 O 3 -PTFE (poly tetra fluoro ethylene) composite thick films for flexible integrated substrates was attempted by using the aerosol deposition method. For optimization of composite thick films, a novel calculation method for the ceramic contents in the composites was attempted. Generally, a thermogravimetry (TG) analysis is used to calculate the ceramic contents in the ceramic-polymer composites. However, the TG analysis requires a long measurement time in each analysis, so we studied a novel calculation method that used a simple dielectric measurement. We used Hashin-Shtrikman bounds to obtain numerical results for the relationship between the dielectric constant of the composites and the contents of Al 2 O 3 . A 3-D electrostatic simulation model similar to the deposited Al 2 O 3 -PTFE composite thick films was prepared, and the simulation result was around the lower bound of the Hashin-Shtrikman bounds. As a result, we could calculate the Al 2 O 3 contents in the composites with a low error of below 5 vol.% from convenient dielectric measurements, and the Al 2 O 3 contents ranged from 51 vol.% to 54 vol.%.
Chaotic digital communication by encoding initial conditions.
Xiaofeng, Gong; Xingang, Wang; Meng, Zhan; Lai, C H
2004-06-01
We investigate the possibility to improve the noise performance of a chaotic digital communication scheme by utilizing further dynamical information. We show that by encoding the initial information of the chaotic carrier according to the transmitting bits, extra redundance can be introduced into the segments of chaotic signals corresponding to the consecutive bits. Such redundant information can be exploited effectively at the receiver end to improve the noise performance of the system. Compared to other methods (e.g., differential chaos shift keying), straightforward application of the proposed modulation/demodulation scheme already provides significant performance gain in the low signal-to-noise ratio (SNR) region. Furthermore, maximum likelihood precleaning procedure based on the Viterbi algorithm can be applied before the demodulation step to overcome the performance degradation in the high SNR region. The study indicates that it is possible to improve the noise performance of the chaotic digital communication scheme if further dynamics information is added to the system. (c) 2004 American Institute of Physics
Analyzing and improving a chaotic encryption method
International Nuclear Information System (INIS)
Wu Xiaogang; Hu Hanping; Zhang Baoliang
2004-01-01
To resist the return map attack [Phys. Rev. Lett. 74 (1995) 1970] presented by Perez and Cerdeira, Shouliang Bu and Bing-Hong Wang proposed a simple method to improve the security of the chaotic encryption by modulating the chaotic carrier with an appropriately chosen scalar signal in [Chaos, Solitons and Fractals 19 (2004) 919]. They maintained that this modulating strategy not only preserved all appropriate information required for synchronizing chaotic systems but also destroyed the possibility of the phase space reconstruction of the sender dynamics such as a return map. However, a critical defect does exist in this scheme. This paper gives a zero-point autocorrelation method, which can recover the parameters of the scalar signal from the modulated signal. Consequently, the messages will be extracted from the demodulated chaotic carrier by using return map. Based on such a fact, an improved scheme is presented to obtain higher security, and the numerical simulation indicates the improvement of the synchronizing performance as well
Building Chaotic Model From Incomplete Time Series
Siek, Michael; Solomatine, Dimitri
2010-05-01
This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual
International Nuclear Information System (INIS)
Zhang, Q.; Shan, F. K.; Liu, G. X.; Liu, A.; Lee, W. J.; Shin, B. C.
2014-01-01
Amorphous indium-titanium-zinc-oxide (ITZO) thin-film transistors (TFTs) with various channel thicknesses were fabricated at room temperature by using pulsed laser deposition. The channel layer thickness (CLT) dependence of the TFTs was investigated. All the ITZO thin films were amorphous, and the surface roughnesses decreased slightly first and then increased with increasing CLT. With increasing CLT from 35 to 140 nm, the on/off current ratio and the field-effect mobility increased, and the subthreshold swing decreased. The TFT with a CLT of 210 nm exhibited the worst performance, while the ITZO TFT with a CLT of 140 nm exhibited the best performance with a subthreshold voltage of 2.86 V, a mobility of 53.9 cm 2 V -1 s -1 , a subthreshold swing of 0.29 V/decade and an on/off current ratio of 10 9 .
Modified scaling function projective synchronization of chaotic systems
International Nuclear Information System (INIS)
Xu Yu-Hua; Zhou Wu-Neng; Fang Jian-An
2011-01-01
This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point, a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method. (general)
Semi-classical quantization of chaotic billiards
International Nuclear Information System (INIS)
Smilansky, U.
1992-02-01
The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)
Chaotic inflation in models with flat directions
International Nuclear Information System (INIS)
Graziani, F.; Olive, K.
1989-01-01
We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)
Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna
2017-11-01
Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.
Biometric estimation of chest wall thickness of females
International Nuclear Information System (INIS)
Berger, C.D.; Lane, B.H.
1985-01-01
Optimal use of whole-body counting data to estimate pulmonary deposition of many of the actinides is dependent upon accurate measurement of the thickness of the chest wall because of severe attenuation of low-energy x rays and photons associated with the decay of these radionuclides. An algorithm for estimation of female chest wall thicknesses, verified by real-time ultrasonic measurements, has been derived based on the correlation of measured chest wall thickness and other common biometric quantities. Use of this algorithm will reduce the error generally associated with estimation of internal actinide deposition previously resulting from assuming an average chest wall thickness for all female subjects
Research on dynamic characteristics of new chaotic-advection fins
International Nuclear Information System (INIS)
Kong Songtao; Dong Qiwu; Liu Minshan; Zhu Qing
2007-01-01
Analysis and the numerical simulation has confirmed that the flow is of the chaotic advection in the flow channel of the new fin. The chaotic advection results in stronger mixing under low Re, and thus enhances the heat transfer and anti-scaling ability. The new fin provides the beneficial exploration to the concept of chaotic advection which applies to the plate-fin heat exchanger. (authors)
Repetitive learning control of continuous chaotic systems
International Nuclear Information System (INIS)
Chen Maoyin; Shang Yun; Zhou Donghua
2004-01-01
Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Wang, San-sheng, E-mail: wangssh@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Hu, Teng [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); He, Tong-fu [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Chen, Zi-yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Yi, Zhong; Meng, Li-Fei [Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China)
2017-03-15
Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co{sub 73}Si{sub 12}B{sub 15} thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co{sub 73}Si{sub 12}B{sub 15} thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co{sub 73}Si{sub 12}B{sub 15} thin films. - Highlights: • The relationship between film thickness and ΔZ/Z, ΔR/R, ΔX/X ratio of CoSiB film exhibits a complex behavior as the film thickness increases from 1.33 to 7.34 µm. The maximum value of GMI ratio is observed when the film thickness was 1.56, 2.48, 3.81 or 7.34 µm. • With the increase of film thickness, the peak frequency shifts to lower frequency, but does not decrease following the t-power law. • The above thickness phenomenon is due to the different magnetic properties of thin films. • The Dual-Ion Beam Assisted Deposition is introduced to prepare the GMI materials.
International Nuclear Information System (INIS)
Zhuang Huihui; Yan Jinliang; Xu Chengyang; Meng Delan
2014-01-01
Cu and Cu/ITO films were prepared on polyethylene terephthalate (PET) substrates with a Ga 2 O 3 buffer layer using radio frequency (RF) and direct current (DC) magnetron sputtering. The effect of Cu layer thickness on the optical and electrical properties of the Cu film deposited on a PET substrate with a Ga 2 O 3 buffer layer was studied, and an appropriate Cu layer thickness of 4.2 nm was obtained. Changes in the optoelectrical properties of Cu(4.2 nm)/ITO(30 nm) films were investigated with respect to the Ga 2 O 3 buffer layer thickness. The optical and electrical properties of the Cu/ITO films were significantly influenced by the thickness of the Ga 2 O 3 buffer layer. A maximum transmission of 86%, sheet resistance of 45 Ω/□ and figure of merit of 3.96 × 10 −3 Ω −1 were achieved for Cu(4.2 nm)/ITO(30 nm) films with a Ga 2 O 3 layer thickness of 15 nm. (semiconductor materials)
Thermal release of D2 from new Be-D co-deposits on previously baked co-deposits
Baldwin, M. J.; Doerner, R. P.
2015-12-01
Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.
Thermal release of D_2 from new Be-D co-deposits on previously baked co-deposits
International Nuclear Information System (INIS)
Baldwin, M.J.; Doerner, R.P.
2015-01-01
Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.
Synthesizing chaotic maps with prescribed invariant densities
International Nuclear Information System (INIS)
Rogers, Alan; Shorten, Robert; Heffernan, Daniel M.
2004-01-01
The Inverse Frobenius-Perron Problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this Letter, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized
Recognizing chaotic states in stadium billiard by calculating gyration radius
Directory of Open Access Journals (Sweden)
M. Barezi
2006-12-01
Full Text Available Nowadays study of chaotic quantum billiards because of their relation to Nano technology. In this paper distribution of zeros of wave function on the boundary of two circular and stadium billiards are investigated. By calculating gyration radius for these points chaotic and non-chaotic states are distinguished.
Chaotic magnetic field line in toroidal plasmas
International Nuclear Information System (INIS)
Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.
1989-05-01
This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)
Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto
2018-03-01
A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.
Despeisse, M; Commichau, S C; Dissertori, G; Garrigos, A; Jarron, P; Miazza, C; Moraes, D; Shah, A; Wyrsch, N; Viertel, Gert M; 10.1016/j.nima.2003.11.022
2004-01-01
We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30mum thick a-Si:H films deposited on top of an ASIC containing a linear array of high- speed low-noise transimpedance amplifiers designed in a 0.25mum CMOS technology. Experimental results presented have been obtained with a 600nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed.
A new chaotic algorithm for image encryption
International Nuclear Information System (INIS)
Gao Haojiang; Zhang Yisheng; Liang Shuyun; Li Dequn
2006-01-01
Recent researches of image encryption algorithms have been increasingly based on chaotic systems, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper presents a new nonlinear chaotic algorithm (NCA) which uses power function and tangent function instead of linear function. Its structural parameters are obtained by experimental analysis. And an image encryption algorithm in a one-time-one-password system is designed. The experimental results demonstrate that the image encryption algorithm based on NCA shows advantages of large key space and high-level security, while maintaining acceptable efficiency. Compared with some general encryption algorithms such as DES, the encryption algorithm is more secure
Generalized projective synchronization of a unified chaotic system
International Nuclear Information System (INIS)
Yan Jianping; Li Changpin
2005-01-01
In the present paper, a simple but efficient control technique of the generalized projective synchronization is applied to a unified chaotic system. Numerical simulations show that this method works very well, which can also be applied to other chaotic systems
Residual stress analysis in thick uranium films
International Nuclear Information System (INIS)
Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.
2005-01-01
Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses
Spectral Properties of Chaotic Signals Generated by the Bernoulli Map
Directory of Open Access Journals (Sweden)
Rafael A. da Costa
2014-11-01
Full Text Available In the last decades, the use of chaotic signals as broadband carriers has been considered in Telecommunications. Despite the relevance of the frequency domain analysis in this field, there are few studies that are concerned with spectral properties of chaotic signals. Bearing this in mind, this paper aims the characterization of the power spectral density (PSD of chaotic orbits generated by Bernoulli maps. We obtain analytic expressions for autocorrelation sequence, PSD and essential bandwidth for chaotic orbits generated by this map as function of the family parameter and Lyapunov exponent. Moreover, we verify that analytical expressions match numerical results. We conclude that the power of the generated orbits is concentrated in low frequencies for all parameters values. Besides, it is possible to obtain chaotic narrowband signals.
Designing key-dependent chaotic S-box with larger key space
International Nuclear Information System (INIS)
Yin Ruming; Yuan Jian; Wang Jian; Shan Xiuming; Wang Xiqin
2009-01-01
The construction of cryptographically strong substitution boxes (S-boxes) is an important concern in designing secure cryptosystems. The key-dependent S-boxes designed using chaotic maps have received increasing attention in recent years. However, the key space of such S-boxes does not seem to be sufficiently large due to the limited parameter range of discretized chaotic maps. In this paper, we propose a new key-dependent S-box based on the iteration of continuous chaotic maps. We explore the continuous-valued state space of chaotic systems, and devise the discrete mapping between the input and the output of the S-box. A key-dependent S-box is constructed with the logistic map in this paper. We show that its key space could be much larger than the current key-dependent chaotic S-boxes.
On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization
International Nuclear Information System (INIS)
Lu Zhao; Shieh Leangsan; Chen GuanRong
2003-01-01
This paper presents a novel Lyapunov-based control approach which utilizes a Lyapunov function of the nominal plant for robust tracking control of general multi-input uncertain nonlinear systems. The difficulty of constructing a control Lyapunov function is alleviated by means of predefining an optimal sliding mode. The conventional schemes for constructing sliding modes of nonlinear systems stipulate that the system of interest is canonical-transformable or feedback-linearizable. An innovative approach that exploits a chaotic optimizing algorithm is developed thereby obtaining the optimal sliding manifold for the control purpose. Simulations on the uncertain chaotic Chen's system illustrate the effectiveness of the proposed approach
Does the classically chaotic Henon–Heiles oscillator exhibit ...
Indian Academy of Sciences (India)
–12]. In contrast to a classically chaotic system, where the exponential divergence of trajectories in phase-space is an unambiguous and confirmatory signature of chaos. [15–17], the decision about whether a quantum system is chaotic or not is ...
Non-reversible evolution of quantum chaotic system. Kinetic description
International Nuclear Information System (INIS)
Chotorlishvili, L.; Skrinnikov, V.
2008-01-01
It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration
Chaotic structure of oil prices
Bildirici, Melike; Sonustun, Fulya Ozaksoy
2018-01-01
The fluctuations in oil prices are very complicated and therefore, it is unable to predict its effects on economies. For modelling complex system of oil prices, linear economic models are not sufficient and efficient tools. Thus, in recent years, economists attached great attention to non-linear structure of oil prices. For analyzing this relationship, GARCH types of models were used in some papers. Distinctively from the other papers, in this study, we aimed to analyze chaotic pattern of oil prices. Thus, it was used the Lyapunov Exponents and Hennon Map to determine chaotic behavior of oil prices for the selected time period.
Lectures on chaotic dynamical systems
Afraimovich, Valentin
2002-01-01
This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.
Security analysis of chaotic communication systems based on Volterra-Wiener-Korenberg model
International Nuclear Information System (INIS)
Lei Min; Meng Guang; Feng Zhengjin
2006-01-01
Pseudo-randomicity is an important cryptological characteristic for proof of encryption algorithms. This paper proposes a nonlinear detecting method based on Volterra-Wiener-Korenberg model and suggests an autocorrelation function to analyze the pseudo-randomicity of chaotic secure systems under different sampling interval. The results show that: (1) the increase of the order of the chaotic transmitter will not necessarily result in a high degree of security; (2) chaotic secure systems have higher and stronger pseudo-randomicity at sparse sampling interval due to the similarity of chaotic time series to the noise; (3) Volterra-Wiener-Korenberg method can also give a further appropriate sparse sampling interval for improving the security of chaotic secure communication systems. For unmasking chaotic communication systems, the Volterra-Wiener-Korenberg technique can be applied to analyze the chaotic time series with surrogate data
Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system
International Nuclear Information System (INIS)
Dong En-Zeng; Chen Zeng-Qiang; Chen Zai-Ping; Ni Jian-Yun
2012-01-01
In this paper, a novel four dimensional hyper-chaotic system is coined based on the Chen system, which contains two quadratic terms and five system parameters. The proposed system can generate a hyper-chaotic attractor in wide parameters regions. By using the center manifold theorem and the local bifurcation theory, a pitchfork bifurcation is demonstrated to arise at the zero equilibrium point. Numerical analysis demonstrates that the hyper-chaotic system can generate complex dynamical behaviors, e.g., a direct transition from quasi-periodic behavior to hyper-chaotic behavior. Finally, an electronic circuit is designed to implement the hyper-chaotic system, the experimental results are consist with the numerical simulations, which verifies the existence of the hyper-chaotic attractor. Due to the complex dynamic behaviors, this new hyper-chaotic system is useful in the secure communication. (general)
Transition to a pair of chaotic symmetric flows
International Nuclear Information System (INIS)
Chen Zhimin; Price, W.G.
2006-01-01
The complexity of transition to chaotic flow is discussed. It is shown that many different bifurcation processes may coexist and join together to excite the chaotic flow. The profile of this nonlinear dynamical behaviour is developed on the basis of a four-mode truncation model
A new pseudorandom number generator based on a complex number chaotic equation
International Nuclear Information System (INIS)
Liu Yang; Tong Xiao-Jun
2012-01-01
In recent years, various chaotic equation based pseudorandom number generators have been proposed. However, the chaotic equations are all defined in the real number field. In this paper, an equation is proposed and proved to be chaotic in the imaginary axis. And a pseudorandom number generator is constructed based on the chaotic equation. The alteration of the definitional domain of the chaotic equation from the real number field to the complex one provides a new approach to the construction of chaotic equations, and a new method to generate pseudorandom number sequences accordingly. Both theoretical analysis and experimental results show that the sequences generated by the proposed pseudorandom number generator possess many good properties
An optical CDMA system based on chaotic sequences
Liu, Xiao-lei; En, De; Wang, Li-guo
2014-03-01
In this paper, a coherent asynchronous optical code division multiple access (OCDMA) system is proposed, whose encoder/decoder is an all-optical generator. This all-optical generator can generate analog and bipolar chaotic sequences satisfying the logistic maps. The formula of bit error rate (BER) is derived, and the relationship of BER and the number of simultaneous transmissions is analyzed. Due to the good property of correlation, this coherent OCDMA system based on these bipolar chaotic sequences can support a large number of simultaneous users, which shows that these chaotic sequences are suitable for asynchronous OCDMA system.
Thermal release of D{sub 2} from new Be-D co-deposits on previously baked co-deposits
Energy Technology Data Exchange (ETDEWEB)
Baldwin, M.J., E-mail: m1baldwin@ucsd.edu; Doerner, R.P.
2015-12-15
Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.
Energy Technology Data Exchange (ETDEWEB)
Saiki, Yoshitaka, E-mail: yoshi.saiki@r.hit-u.ac.jp [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan); Yamada, Michio [Research Institute for Mathematical Sciences (RIMS), Kyoto University, Kyoto 606-8502 (Japan); Chian, Abraham C.-L. [Paris Observatory, LESIA, CNRS, 92195 Meudon (France); National Institute for Space Research (INPE), P.O. Box 515, São José dos Campos, São Paulo 12227-010 (Brazil); Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil); School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005 (Australia); Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Miranda, Rodrigo A. [Faculty UnB-Gama, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Rempel, Erico L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil)
2015-10-15
The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.
International Nuclear Information System (INIS)
Saiki, Yoshitaka; Yamada, Michio; Chian, Abraham C.-L.; Miranda, Rodrigo A.; Rempel, Erico L.
2015-01-01
The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs
Directory of Open Access Journals (Sweden)
Yu-Kuang Liao
2017-04-01
Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.
Identifying Chaotic FitzHugh–Nagumo Neurons Using Compressive Sensing
Directory of Open Access Journals (Sweden)
Ri-Qi Su
2014-07-01
Full Text Available We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriate controls to bring the network to a normal state. However, due to couplings among the nodes, the measured time series, even from non-chaotic neurons, would appear random, rendering inapplicable traditional nonlinear time-series analysis, such as the delay-coordinate embedding method, which yields information about the global dynamics of the entire network. Our method is based on compressive sensing. In particular, we demonstrate that identifying chaotic elements can be formulated as a general problem of reconstructing the nodal dynamical systems, network connections and all coupling functions, as well as their weights. The working and efficiency of the method are illustrated by using networks of non-identical FitzHugh–Nagumo neurons with randomly-distributed coupling weights.
Quantum graphs: a simple model for chaotic scattering
International Nuclear Information System (INIS)
Kottos, Tsampikos; Smilansky, Uzy
2003-01-01
We connect quantum graphs with infinite leads, and turn them into scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduces quite well the predictions of the appropriately defined random matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between random matrix theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the forefront of the research in chaotic scattering and related fields
Linking Chaotic Advection with Subsurface Biogeochemical Processes
Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.
2017-12-01
This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.
Synchronization and parameter identification of one class of realistic chaotic circuit
International Nuclear Information System (INIS)
Chun-Ni, Wang; Jun, Ma; Run-Tong, Chu; Shi-Rong, Li
2009-01-01
In this paper, the synchronization and the parameter identification of the chaotic Pikovsky–Rabinovich (PR) circuits are investigated. The linear error of the second corresponding variables is used to change the driven chaotic PR circuit, and the complete synchronization of the two identical chaotic PR circuits is realized with feedback intensity k increasing to a certain threshold. The Lyapunov exponents of the chaotic PR circuits are calculated by using different feedback intensities and our results are confirmed. The case where the two chaotic PR circuits are not identical is also investigated. A general positive Lyapunov function V, which consists of all the errors of the corresponding variables and parameters and changeable gain coefficient, is constructed by using the Lyapunov stability theory to study the parameter identification and complete synchronization of two non-identical chaotic circuits. The controllers and the parameter observers could be obtained analytically only by simplifying the criterion dV/dt < 0 (differential coefficient of Lyapunov function V with respect to time is negative). It is confirmed that the two non-identical chaotic PR circuits could still reach complete synchronization and all the unknown parameters in the drive system are estimated exactly within a short transient period
Adaptive control of discrete-time chaotic systems: a fuzzy control approach
International Nuclear Information System (INIS)
Feng Gang; Chen Guanrong
2005-01-01
This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaojun [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001 (China); Hong, Ling, E-mail: hongling@mail.xjtu.edu.cn; Jiang, Jun [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China)
2016-08-15
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.
Influence of PECVD deposited SiNx passivation layer thickness on In0.18Al0.82N/GaN/Si HEMT
International Nuclear Information System (INIS)
Singh, Sarab Preet; Liu, Yi; Ngoo, Yi Jie; Kyaw, Lwin Min; Bera, Milan Kumar; Chor, Eng Fong; Dolmanan, S B; Tripathy, Sudhiranjan
2015-01-01
The influence of plasma enhanced chemical vapour deposited (PECVD) silicon nitride (SiN x ) passivation film thickness on In 0.18 Al 0.82 N/GaN/Si heterostructures and HEMTs has been investigated. The formation of Si 3 N 4 was confirmed by x-ray photoelectron spectroscopy (XPS) measurements. X-ray reflectivity (XRR) measurements reveal that both the density and roughness of the SiN x film increase with increasing film thickness. With an increase in SiN x film thickness, a significant increase in two-dimensional electron gas (2DEG) density, drain current, extrinsic transconductance and negative threshold voltage shift of the In 0.18 Al 0.82 /GaN/Si HEMTs are observed. An optimal thickness of SiN x is ∼100 nm and it yields a substantial increase in 2DEG density (∼30%) with a minimum sheet resistance for In 0.18 Al 0.82 N/GaN/Si heterostructures. Furthermore, we correlate the observed SiN x film thickness-dependent electrical characteristics of In 0.18 Al 0.82 /GaN/Si HEMTs with the density of the SiN x film. (paper)
Modelling chaotic Hamiltonian systems as a Markov Chain ...
African Journals Online (AJOL)
The behaviour of chaotic Hamiltonian system has been characterised qualitatively in recent times by its appearance on the Poincaré section and quantitatively by the Lyapunov exponent. Studying the dynamics of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-linearly coupled oscillators as their ...
Chaotic behaviour of Zeeman machines at introductory course of mechanics
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
Chaotic behaviour of Zeeman machines at introductory course of mechanics
International Nuclear Information System (INIS)
Nagy, P.; Tasnádi, P.
2015-01-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine. 1. –
Hierarchy of rational order families of chaotic maps with an invariant ...
Indian Academy of Sciences (India)
We introduce an interesting hierarchy of rational order chaotic maps that possess an invariant measure. In contrast to the previously introduced hierarchy of chaotic maps [1–5], with merely entropy production, the rational order chaotic maps can simultaneously produce and consume entropy. We compute the ...
Generation and control of multi-scroll chaotic attractors in fractional order systems
International Nuclear Information System (INIS)
Ahmad, Wajdi M.
2005-01-01
The objective of this paper is twofold: on one hand we demonstrate the generation of multi-scroll attractors in fractional order chaotic systems. Then, we design state feedback controllers to eliminate chaos from the system trajectories. It is demonstrated that modifying the underlying nonlinearity of the fractional chaotic system results in the birth of multiple chaotic attractors, thus forming the so called multi-scroll attractors. The presence of chaotic behavior is evidenced by a positive largest Lyapunov exponent computed for the output time series. We investigate generation and control of multi-scroll attractors in two different models, both of which are fractional order and chaotic: an electronic oscillator, and a mechanical 'jerk' model. The current findings extend previously reported results on generation of n-scroll attractors from the domain of integer order to the domain of fractional order chaotic systems, and addresses the issue of controlling such chaotic behaviors. Our investigations are validated through numerical simulations
Design of Threshold Controller Based Chaotic Circuits
DEFF Research Database (Denmark)
Mohamed, I. Raja; Murali, K.; Sinha, Sudeshna
2010-01-01
We propose a very simple implementation of a second-order nonautonomous chaotic oscillator, using a threshold controller as the only source of nonlinearity. We demonstrate the efficacy and simplicity of our design through numerical and experimental results. Further, we show that this approach...... of using a threshold controller as a nonlinear element, can be extended to obtain autonomous and multiscroll chaotic attractor circuits as well....
Experimental Observation of Chaotic Beats in Oscillators Sharing Nonlinearity
Paul Asir, M.; Jeevarekha, A.; Philominathan, P.
This paper deals with the generation of chaotic beats in a system of two forced dissipative LCR oscillators sharing a nonlinear element. The presence of two external periodic excitations and a common nonlinear element in the chosen system enables the facile generation of chaotic beats. Thus rendered chaotic beats were characterized in both time domain and phase space. Lyapunov exponents and envelope of the beats were computed to diagnose the chaotic nature of the signals. The role of common nonlinearity on the complexity of the generated beats is discussed. Real-time experimental hardware implementation has also been done to confirm the subsistence of the phenomenon, for the first time. Extensive Multisim simulations were carried out to understand, a bit more about the shrinkage and revivals of state variables in phase space.
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
International Nuclear Information System (INIS)
Goudarzi, Sobhan; Jafari, Sajad; Moradi, Mohammad Hassan; Sprott, J.C.
2016-01-01
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
A Simple Hybrid Synchronization for a Class of Chaotic Financial Systems
Directory of Open Access Journals (Sweden)
Jiming Zheng
2017-01-01
Full Text Available It is an important to achieve the hybrid synchronization of the chaotic financial system. Chaos synchronization is equivalent to the error system which is asymptotically stable. The hybrid synchronization for a class of finance chaotic systems is discussed. First, a simple single variable controller is obtained to synchronize two identical chaotic financial systems with different initial conditions. Second, a novel algorithm is proposed to determine the variables of the master system that should antisynchronize with corresponding variables of the slave system and use this algorithm to determine the corresponding variables in the chaotic financial systems. The hybrid synchronization of the chaotic financial systems is realized by a simple controller. At the same time, different controllers can implement the chaotic financial system hybrid synchronization. In comparison with the existing results, the obtained controllers in this paper are simpler than those of the existing results. Finally, numerical simulations show the effectiveness of the proposed results.
NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach
Energy Technology Data Exchange (ETDEWEB)
Goudarzi, Sobhan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moradi, Mohammad Hassan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Sprott, J.C. [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States)
2016-02-15
The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.
Mesa, Hector; Drawz, Sarah; Dykoski, Richard; Manivel, Juan Carlos
2015-10-01
An increased amount of submucosal (SM) fat in the colon on imaging is considered to be characteristic of inflammatory bowel disease (IBD); however, a recent study in patients without IBD reported a correlation between colonic SM fat deposition and body weight (BW). The aim of this study was to perform a morphometric investigation of SM thickness in areas of fat deposition in the terminal ileum (TI), ileocaecal valve (ICV), and colonic sections, to determine whether there are variations by site, and whether it shows a correlation with BW, body mass index (BMI), or age. Representative samples of TI, ICV and colonic sections were collected prospectively from 115 autopsy cases without IBD. All of the study subjects were male (Veterans Hospital). SM thickness was measured in areas of fat deposition. Correlation analysis was performed between SM thickness and BW, BMI, and age. Fat deposition was common; however, with the exception of the ICV, it was neither consistent nor prominent, and it did not show a statistical correlation with BW, BMI, or age. SM fat deposition is common but not uniform or conspicuous in the TI or colon. In contrast to extravisceral intra-abdominal fat, it does not show a correlation with BW or BMI, and is not associated with ageing. As all study subjects were male, gender-dependent variability cannot be excluded. © 2015 John Wiley & Sons Ltd.
Illusion optics in chaotic light
International Nuclear Information System (INIS)
Zhang Suheng; Gan Shu; Xiong Jun; Zhang Xiangdong; Wang Kaige
2010-01-01
The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoretical proposal of similar effects in complementary media.
Exact folded-band chaotic oscillator.
Corron, Ned J; Blakely, Jonathan N
2012-06-01
An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.
Chaos synchronization of a unified chaotic system via partial linearization
International Nuclear Information System (INIS)
Yu Yongguang; Li Hanxiong; Duan Jian
2009-01-01
A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.
International Nuclear Information System (INIS)
Linde, A.D.
1986-05-01
It is shown that the universe evolution in the chaotic inflation scenario has no end and may have no beginning. According to this scenario, the universe consists of exponentially large number of different mini-universes inside which all possible metastable vacuum states and all possible types of compactification are realized. (author)
Control of chaotic vibration in automotive wiper systems
International Nuclear Information System (INIS)
Wang Zheng; Chau, K.T.
2009-01-01
Chaotic vibration has been identified in the automotive wiper system at certain wiping speeds. This irregular vibration not only decreases the wiping efficiency, but also degrades the driving comfort. The purpose of this paper is to propose a new approach to stabilize the chaotic vibration in the wiper system. The key is to employ the extended time-delay feedback control in such a way that the applied voltage of the wiper motor is online adjusted according to its armature current feedback. Based on a practical wiper system, it is verified that the proposed approach can successfully stabilize the chaotic vibration, and provide a wide range of wiping speeds
Design and Hardware Implementation of a New Chaotic Secure Communication Technique.
Directory of Open Access Journals (Sweden)
Li Xiong
Full Text Available In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.
Design and Hardware Implementation of a New Chaotic Secure Communication Technique.
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.
International Nuclear Information System (INIS)
Despeisse, M.; Anelli, G.; Commichau, S.; Dissertori, G.; Garrigos, A.; Jarron, P.; Miazza, C.; Moraes, D.; Shah, A.; Wyrsch, N.; Viertel, G.
2004-01-01
We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30 μm thick a-Si:H films deposited on top of an ASIC containing a linear array of high-speed low-noise transimpedance amplifiers designed in a 0.25 μm CMOS technology. Experimental results presented have been obtained with a 600 nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed
Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system
Directory of Open Access Journals (Sweden)
Vaidyanathan Sundarapandian
2015-09-01
Full Text Available First, this paper announces a seven-term novel 3-D conservative chaotic system with four quadratic nonlinearities. The conservative chaotic systems are characterized by the important property that they are volume conserving. The phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed. An important property of the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hidden chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are obtained as L1 = 0.0395,L2 = 0 and L3 = −0.0395. The Kaplan-Yorke dimension of the novel conservative chaotic system is DKY =3. Next, an adaptive controller is designed to globally stabilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve global chaos synchronization of the identical conservative chaotic systems with unknown parameters. MATLAB simulations have been depicted to illustrate the phase portraits of the novel conservative chaotic system and also the adaptive control results.
A Novel Audio Cryptosystem Using Chaotic Maps and DNA Encoding
Directory of Open Access Journals (Sweden)
S. J. Sheela
2017-01-01
Full Text Available Chaotic maps have good potential in security applications due to their inherent characteristics relevant to cryptography. This paper introduces a new audio cryptosystem based on chaotic maps, hybrid chaotic shift transform (HCST, and deoxyribonucleic acid (DNA encoding rules. The scheme uses chaotic maps such as two-dimensional modified Henon map (2D-MHM and standard map. The 2D-MHM which has sophisticated chaotic behavior for an extensive range of control parameters is used to perform HCST. DNA encoding technology is used as an auxiliary tool which enhances the security of the cryptosystem. The performance of the algorithm is evaluated for various speech signals using different encryption/decryption quality metrics. The simulation and comparison results show that the algorithm can achieve good encryption results and is able to resist several cryptographic attacks. The various types of analysis revealed that the algorithm is suitable for narrow band radio communication and real-time speech encryption applications.
Generation of multi-wing chaotic attractor in fractional order system
International Nuclear Information System (INIS)
Zhang Chaoxia; Yu Simin
2011-01-01
Highlights: → We investigate a novel approach for generating multi-wing chaotic attractors. → We introduce a fundamental fractional differential nominal linear system. → A proper nonlinear state feedback controller is designed. → The controlled system can generate fractional-order multi-wing chaotic attractors. - Abstract: In this paper, a novel approach is proposed for generating multi-wing chaotic attractors from the fractional linear differential system via nonlinear state feedback controller equipped with a duality-symmetric multi-segment quadratic function. The main idea is to design a proper nonlinear state feedback controller by using four construction criterions from a fundamental fractional differential nominal linear system, so that the controlled fractional differential system can generate multi-wing chaotic attractors. It is the first time in the literature to report the multi-wing chaotic attractors from an uncoupled fractional differential system. Furthermore, some basic dynamical analysis and numerical simulations are also given, confirming the effectiveness of the proposed method.
International Nuclear Information System (INIS)
Gedelian, Cynthia A.; Rajanna, K.C.; Premerlani, Brian; Lu, Toh-Ming
2014-01-01
Photoluminescence spectra of PPV at varying thicknesses and temperatures have been studied. A study of the quenching of the polymer film using a modified version of fluorescence spectroscopy reveals interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. The application of the Stern–Volmer equation to solid film is discussed. Stern–Volmer plots were nonlinear with downward deviations at higher thickness of the film which was explained due to self-quenching in films and larger conformational change and increased restriction from change in electron density due to electron transition during excitation in bulk polymer films over 60 nm thick. PPV deposited into porous (∼4 nm in diameter) nanostructured substrate shows a larger 0–0 than 0–1 transition peak intensity and decreased disorder in the films due to structure imposed by substrate matrix. Temperature dependent effects are measured for a film at 500 Å, right on the border between the two areas. PPV films deposited on porous methyl silsesquioxane (MSQ) were also examined in order to compare the flat film to a substrate that allows for the domination of interface effects. The enthalpies of the first two peaks are very similar, but the third peak demonstrates a lower enthalpy and a larger wavelength shift with temperature. Films deposited inside pores show a smaller amount of disorder than flat films. Calculation of the Huang–Rhys factor at varying temperatures for the flat film and film in porous MSQ shows large temperature dependence for the flat film but a smaller amount of disorder in the nanostructured film. -- Highlights: • Poly (p-phenylene vinylene) films deposited by chemical vapor deposition exhibited photoluminescence properties. • Fluorescence spectra of the polymer films revealed interface effects dominating at thicknesses below about 600 Å, while bulk effects dominate at higher thicknesses. • Stern–Volmer plots were
A combination chaotic system and application in color image encryption
Parvaz, R.; Zarebnia, M.
2018-05-01
In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.
Analytically solvable chaotic oscillator based on a first-order filter
Energy Technology Data Exchange (ETDEWEB)
Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N. [Charles M. Bowden Laboratory, Aviation and Missile Research, Development and Engineering Center, U.S. Army RDECOM, Redstone Arsenal, Alabama 35898 (United States)
2016-02-15
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.
Synchronization Between Two Different Switched Chaotic Systems By Switching Control
Directory of Open Access Journals (Sweden)
Du Li Ming
2016-01-01
Full Text Available This paper is concerned with the synchronization problem of two different switched chaotic systems, considering the general case that the master-slave switched chaotic systems have uncertainties. Two basic problems are considered: one is projective synchronization of switched chaotic systems under arbitrary switching; the other is projective synchronization of switched chaotic systems by design of switching when synchronization cannot achieved by using any subsystems alone. For the two problems, common Lyapunov function method and multiple Lyapunov function method are used respectively, an adaptive control scheme has been presented, some sufficient synchronization conditions are attainted, and the switching signal is designed. Finally, the numerical simulation is provide to show the effectiveness of our method.
Adaptive control and synchronization of a fractional-order chaotic ...
Indian Academy of Sciences (India)
In this paper, the chaotic dynamics of a three-dimensional fractional-order chaotic sys- tem is investigated. ... So, the fractional description is closer to reality. One of the ..... For the augmented systems (14) and (16), the candidate function can.
The transition to chaotic phase synchronization
DEFF Research Database (Denmark)
Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.
2012-01-01
The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...
The Thickness Dependence of Optical Constants of Ultrathin Iron Films
International Nuclear Information System (INIS)
Gao Shang; Lian Jie; Wang Xiao; Li Ping; Sun Xiao-Fen; Li Qing-Hao
2013-01-01
Ultrathin iron films with different thicknesses from 7.1 to 51.7 nm are deposited by magnetron sputtering and covered by tantalum layers protecting them from being oxidized. These ultrathin iron films are studied by spectroscopic ellipsometry and transmittance measurement. An extra tantalum film is deposited under the same sputtering conditions and its optical constants and film thickness are obtained by a combination of ellipsometry and transmission measurement. After introducing these obtained optical constants and film thickness into the tantalum-iron film, the optical constants and film thicknesses of ultrathin iron films with different thicknesses are obtained. The results show that combining ellipsometry and transmission measurement improves the uniqueness of the obtained film thickness. The optical constants of ultrathin iron films depend strongly on film thicknesses. There is a broad absorption peak at about 370 nm and it shifts to 410 nm with film thickness decreasing
Multi-machine power system stabilizers design using chaotic optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-07-15
In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.
A novel double-convection chaotic attractor, its adaptive control and circuit simulation
Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto
2018-03-01
A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.
Quantifying chaotic dynamics from integrate-and-fire processes
Energy Technology Data Exchange (ETDEWEB)
Pavlov, A. N. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Saratov State Technical University, Politehnicheskaya Str. 77, 410054 Saratov (Russian Federation); Pavlova, O. N. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Mohammad, Y. K. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Tikrit University Salahudin, Tikrit Qadisiyah, University Str. P.O. Box 42, Tikrit (Iraq); Kurths, J. [Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, 14473 Potsdam (Germany); Institute of Physics, Humboldt University Berlin, 12489 Berlin (Germany)
2015-01-15
Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.
Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity
Jeevarekha, A.; Paul Asir, M.; Philominathan, P.
2016-06-01
This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.
A novel block cryptosystem based on iterating a chaotic map
International Nuclear Information System (INIS)
Xiang Tao; Liao Xiaofeng; Tang Guoping; Chen Yong; Wong, Kwok-wo
2006-01-01
A block cryptographic scheme based on iterating a chaotic map is proposed. With random binary sequences generated from the real-valued chaotic map, the plaintext block is permuted by a key-dependent shift approach and then encrypted by the classical chaotic masking technique. Simulation results show that performance and security of the proposed cryptographic scheme are better than those of existing algorithms. Advantages and security of our scheme are also discussed in detail
Chaotic evolution of arms races
Tomochi, Masaki; Kono, Mitsuo
1998-12-01
A new set of model equations is proposed to describe the evolution of the arms race, by extending Richardson's model with special emphases that (1) power dependent defensive reaction or historical enmity could be a motive force to promote armaments, (2) a deterrent would suppress the growth of armaments, and (3) the defense reaction of one nation against the other nation depends nonlinearly on the difference in armaments between two. The set of equations is numerically solved to exhibit stationary, periodic, and chaotic behavior depending on the combinations of parameters involved. The chaotic evolution is realized when the economic situation of each country involved in the arms race is quite different, which is often observed in the real world.
Experimental chaotic quantification in bistable vortex induced vibration systems
Huynh, B. H.; Tjahjowidodo, T.
2017-02-01
The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear
Chaos synchronization between two different chaotic dynamical systems
International Nuclear Information System (INIS)
Park, Ju H.
2006-01-01
This work presents chaos synchronization between two different chaotic systems by nonlinear control laws. First, synchronization problem between Genesio system and Rossler system has been investigated, and then the similar approach is applied to the synchronization problem between Genesio system and a new chaotic system developed recently in the literature. The control performances are verified by two numerical examples
Chaotic Motion of Nonlinearly Coupled Quintic Oscillators | Adeloye ...
African Journals Online (AJOL)
With a fixed energy, we investigate the motion of two nonlinearly coupled quintic oscillators for various values of the coupling strength with the aid of the Poincare surface of section. It is observed that chaotic motion sets in for coupling strength as low as 0.001. The degree of chaoticity generally increases as the coupling ...
Nonlinear observer based phase synchronization of chaotic systems
International Nuclear Information System (INIS)
Meng Juan; Wang Xingyuan
2007-01-01
This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme
Energy Technology Data Exchange (ETDEWEB)
Martinez Q, E.; Aguilera, E.F
1990-12-15
Being based on the Elastic scattering and in the Energy losses that suffer a projectile to the interacting with the matter, a method that allows to determine the thickness of a target deposited in a more heavy substrate is presented. The obtained results are consistent with that waited and the derived errors of the method are small. The used technique allows to reduce in considerable form the systematic errors coming from the calibration of the equipment. It is considered that this method is applicable in an interval of thickness quite wide and for many materials since it is only necessary to choose the projectile type and the energy of the same one appropriately. (Author)
Lag synchronization of chaotic systems with time-delayed linear
Indian Academy of Sciences (India)
In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems.
Banknote authentication using chaotic elements technology
Ambadiyil, Sajan; P. S., Krishnendu; Mahadevan Pillai, V. P.; Prabhu, Radhakrishna
2017-10-01
The counterfeit banknote is a growing threat to the society since the advancements in the field of computers, scanners and photocopiers, as they have made the duplication process for banknote much simpler. The fake note detection systems developed so far have many drawbacks such as high cost, poor accuracy, unavailability, lack of user-friendliness and lower effectiveness. One possible solution to this problem could be the use of a system uniquely linked to the banknote itself. In this paper, we present a unique identification and authentication process for the banknote using chaotic elements embedded in it. A chaotic element means that the physical elements are formed from a random process independent from human intervention. The chaotic elements used in this paper are the random distribution patterns of such security fibres set into the paper pulp. A unique ID is generated from the fibre pattern obtained from UV image of the note, which can be verified by any person who receives the banknote to decide whether the banknote is authentic or not. Performance analysis of the system is also studied in this paper.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
Global chaos synchronization of new chaotic systems via nonlinear control
International Nuclear Information System (INIS)
Chen, H.-K.
2005-01-01
Nonlinear control is an effective method for making two identical chaotic systems or two different chaotic systems be synchronized. However, this method assumes that the Lyapunov function of error dynamic (e) of synchronization is always formed as V (e) = 1/2e T e. In this paper, modification based on Lyapunov stability theory to design a controller is proposed in order to overcome this limitation. The method has been applied successfully to make two identical new systems and two different chaotic systems (new system and Lorenz system) globally asymptotically synchronized. Since the Lyapunov exponents are not required for the calculation, this method is effective and convenient to synchronize two identical systems and two different chaotic systems. Numerical simulations are also given to validate the proposed synchronization approach
Color image encryption based on Coupled Nonlinear Chaotic Map
International Nuclear Information System (INIS)
Mazloom, Sahar; Eftekhari-Moghadam, Amir Masud
2009-01-01
Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
Control of Alq3 wetting layer thickness via substrate surface functionalization.
Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J
2007-06-05
The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.
Modelling of long-wave chaotic radar system for anti-stealth applications
Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi
2018-04-01
Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.
On analytical justification of phase synchronization in different chaotic systems
International Nuclear Information System (INIS)
Erjaee, G.H.
2009-01-01
In analytical or numerical synchronizations studies of coupled chaotic systems the phase synchronizations have less considered in the leading literatures. This article is an attempt to find a sufficient analytical condition for stability of phase synchronization in some coupled chaotic systems. The method of nonlinear feedback function and the scheme of matrix measure have been used to justify this analytical stability, and tested numerically for the existence of the phase synchronization in some coupled chaotic systems.
Chaotic scattering of two identical point vortex pairs revisited
DEFF Research Database (Denmark)
Tophøj, Laust Emil Hjerrild; Aref, Hassan
2008-01-01
A new numerical exploration suggests that the motion of two vortex pairs, with constituent vortices all of the same absolute circulation, displays chaotic scattering regimes. The mechanisms leading to chaotic scattering are different from the “slingshot effect” identified by Price [Phys. Fluids A...
Scaling Features of Multimode Motions in Coupled Chaotic Oscillators
DEFF Research Database (Denmark)
Pavlov, A.N.; Sosnovtseva, Olga; Mosekilde, Erik
2003-01-01
Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asynchronous dynamics (torus or torus-Chaos) to different states of chaotic phase ...
Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films
International Nuclear Information System (INIS)
Prathap, P; Revathi, N; Subbaiah, Y P Venkata; Reddy, K T Ramakrishna
2008-01-01
Thin films of ZnS with thicknesses ranging from 100 to 600 nm have been deposited on glass substrates by close spaced thermal evaporation. All the films were grown at the same deposition conditions except the deposition time. The effect of thickness on the physical properties of ZnS films has been studied. The experimental results indicated that the thickness affects the structure, lattice strain, surface morphology and optoelectronic properties of ZnS films significantly. The films deposited at a thickness of 100 nm showed hexagonal structure whereas films of thickness 300 nm or more showed cubic structure. However, coexistence of both cubic and hexagonal structures was observed in the films of 200 nm thickness. The surface roughness of the films showed an increasing trend at higher thicknesses of the films. A blue-shift in the energy band gap along with an intense UV emission band was observed with the decrease of film thickness, which are ascribed to the quantum confinement effect. The behaviour of optical constants such as refractive index and extinction coefficient were analysed. The variation of refractive index and extinction coefficient with thickness was explained on the basis of the contribution from the packing density of the layers. The electrical resistivity as well as the activation energy were evaluated and found to decrease with the increase of film thickness. The thickness had a significant influence on the optical band gap as well as the luminescence intensity
Adaptive control of chaotic continuous-time systems with delay
Tian, Yu-Chu; Gao, Furong
1998-06-01
A simple delay system governed by a first-order differential-delay equation may behave chaotically, but the conditions for the system to have such behaviors have not been well recognized. In this paper, a set of rules is postulated first for the conditions for the delay system to display chaos. A model-reference adaptive control scheme is then proposed to control the chaotic system state to converge to an arbitrarily given reference trajectory with certain and uncertain system parameters. Numerical examples are given to analyze the chaotic behaviors of the delay system and to demonstrate the effectiveness of the proposed adaptive control scheme.
A stream cipher based on a spatiotemporal chaotic system
International Nuclear Information System (INIS)
Li Ping; Li Zhong; Halang, Wolfgang A.; Chen Guanrong
2007-01-01
A stream cipher based on a spatiotemporal chaotic system is proposed. A one-way coupled map lattice consisting of logistic maps is served as the spatiotemporal chaotic system. Multiple keystreams are generated from the coupled map lattice by using simple algebraic computations, and then are used to encrypt plaintext via bitwise XOR. These make the cipher rather simple and efficient. Numerical investigation shows that the cryptographic properties of the generated keystream are satisfactory. The cipher seems to have higher security, higher efficiency and lower computation expense than the stream cipher based on a spatiotemporal chaotic system proposed recently
Multicarrier chaotic communications in multipath fading channels without channel estimation
Energy Technology Data Exchange (ETDEWEB)
Wang, Shilian, E-mail: wangsl@nudt.edu.cn; Zhang, Zhili [College of Electrical Science and Engineering, National University of Defense Technology, Changsha, 410073, P R China (China)
2015-01-15
A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Multicarrier chaotic communications in multipath fading channels without channel estimation
Directory of Open Access Journals (Sweden)
Shilian Wang
2015-01-01
Full Text Available A multi-carrier chaotic shift keying(MC-CSK communication scheme with low probability of interception(LPI is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Synchronizing a class of uncertain chaotic systems
International Nuclear Information System (INIS)
Chen Maoyin; Zhou Donghua; Shang Yun
2005-01-01
This Letter deals with the synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer based response system is designed to synchronize a given chaotic system with unknown parameters and external disturbances. Lyapunov stability ensures the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of Genesio-Tesi system verifies the effectiveness of this scheme
Improvement on generalised synchronisation of chaotic systems
International Nuclear Information System (INIS)
Hui-Bin, Zhu; Fang, Qiu; Bao-Tong, Cui
2010-01-01
In this paper, the problem of generalised synchronisation of two different chaotic systems is investigated. Some less conservative conditions are derived using linear matrix inequality other than existing results. Furthermore, a simple adaptive control scheme is proposed to achieve the generalised synchronisation of chaotic systems. The proposed method is simple and easy to implement in practice and can be applied to secure communications. Numerical simulations are also given to demonstrate the effectiveness and feasibility of the theoretical analysis
Applications of chaotic neurodynamics in pattern recognition
Baird, Bill; Freeman, Walter J.; Eeckman, Frank H.; Yao, Yong
1991-08-01
Network algorithms and architectures for pattern recognition derived from neural models of the olfactory system are reviewed. These span a range from highly abstract to physiologically detailed, and employ the kind of dynamical complexity observed in olfactory cortex, ranging from oscillation to chaos. A simple architecture and algorithm for analytically guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in the same network is described. A matrix inversion determines network weights, given prototype patterns to be stored. There are N units of capacity in an N node network with 3N2 weights. It costs one unit per static attractor, two per Fourier component of each sequence, and three to four per chaotic attractor. There are no spurious attractors, and for sequences there is a Liapunov function in a special coordinate system which governs the approach of transient states to stored trajectories. Unsupervised or supervised incremental learning algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be implemented. The architecture can be ''folded'' into a recurrent network with higher order weights that can be used as a model of cortex that stores oscillatory and chaotic attractors by a Hebb rule. Network performance is demonstrated by application to the problem of real-time handwritten digit recognition. An effective system with on-line learning has been written by Eeckman and Baird for the Macintosh. It utilizes static, oscillatory, and/or chaotic attractors of two kinds--Lorenze attractors, or attractors resulting from chaotically interacting oscillatory modes. The successful application to an industrial pattern recognition problem of a network architecture of considerable physiological and dynamical complexity, developed by Freeman and Yao, is described. The data sets of the problem come in three classes of difficulty, and performance of the biological network is
Regular and Chaotic Regimes in Scalar Field Cosmology
Directory of Open Access Journals (Sweden)
Alexey V. Toporensky
2006-03-01
Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.
Towards generalized synchronization of strictly different chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Femat, R. [Matematicas Aplicadas y Sistemas Computacionales, IPICYT, Apdo. Postal 3-90, 78291 Tangamanga, San Luis Potosi S.L.P. (Mexico)]. E-mail: rfemat@ipicyt.edu.mx; Kocarev, L. [Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0402 (United States)]. E-mail: lkocarev@ucsd.edu; Gerven, L. van [Department of Mechanical Engineering, Technische Universiteit Eindhoven (Netherlands); Monsivais-Perez, M.E. [Matematicas Aplicadas y Sistemas Computacionales, IPICYT, Camino a la Presa San Jose 2055, 78216 Lomas 4a Sec., San Luis Potosi S.L.P. (Mexico)
2005-07-11
This contribution addresses the problem of the generalized synchronization (GS) in different chaotic systems, and departs from chaotic systems in a triangular from, which can be derived from Lie derivatives. A state-feedback (full knowledge of both master and slave systems) scheme is designed, which achieves GS. The work includes illustrative examples; moreover an experimental setup is used to corroborate the obtained results.
A New Chaotic System with Positive Topological Entropy
Directory of Open Access Journals (Sweden)
Zhonglin Wang
2015-08-01
Full Text Available This paper introduces a new simple system with a butterfly chaotic attractor. This system has rich and complex dynamics. With some typical parameters, its Lyapunov dimension is greater than other known three dimensional chaotic systems. It exhibits chaotic behavior over a large range of parameters, and the divergence of flow of this system is not a constant. The dynamics of this new system are analyzed via Lyapunov exponent spectrum, bifurcation diagrams, phase portraits and the Poincaré map. The compound structures of this new system are also analyzed. By means of topological horseshoe theory and numerical computation, the Poincaré map defined for the system is proved to be semi-conjugate to 3-shift map, and thus the system has positive topological entropy.
Importance sampling of rare events in chaotic systems
DEFF Research Database (Denmark)
Leitão, Jorge C.; Parente Lopes, João M.Viana; Altmann, Eduardo G.
2017-01-01
space of chaotic systems. As examples of our general framework we compute the distribution of finite-time Lyapunov exponents (in different chaotic maps) and the distribution of escape times (in transient-chaos problems). Our methods sample exponentially rare states in polynomial number of samples (in......Finding and sampling rare trajectories in dynamical systems is a difficult computational task underlying numerous problems and applications. In this paper we show how to construct Metropolis-Hastings Monte-Carlo methods that can efficiently sample rare trajectories in the (extremely rough) phase...... both low- and high-dimensional systems). An open-source software that implements our algorithms and reproduces our results can be found in reference [J. Leitao, A library to sample chaotic systems, 2017, https://github.com/jorgecarleitao/chaospp]....
Chaotic behavior of a quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)
2013-02-15
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.
Chaotic behavior of a quantum waveguide
International Nuclear Information System (INIS)
Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.
2013-01-01
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system
Searching of Chaotic Elements in Hydrology
Directory of Open Access Journals (Sweden)
Sorin VLAD
2014-03-01
Full Text Available Chaos theory offers new means of understanding and prediction of phenomena otherwise considered random and unpredictable. The signatures of chaos can be isolated by performing nonlinear analysis of the time series available. The paper presents the results obtained by conducting a nonlinear analysis of the time series of daily Siret river flow (located in the North-Eastern part of Romania. The time series analysis is recorded starting with January 1999 to July 2009. The attractor is embedded in the reconstructed phase space then the chaotic dynamics is revealed computing the chaotic invariants - correlation dimension and the maximum Lyapunov Exponent.
A novel algorithm for image encryption based on mixture of chaotic maps
International Nuclear Information System (INIS)
Behnia, S.; Akhshani, A.; Mahmodi, H.; Akhavan, A.
2008-01-01
Chaos-based encryption appeared recently in the early 1990s as an original application of nonlinear dynamics in the chaotic regime. In this paper, an implementation of digital image encryption scheme based on the mixture of chaotic systems is reported. The chaotic cryptography technique used in this paper is a symmetric key cryptography. In this algorithm, a typical coupled map was mixed with a one-dimensional chaotic map and used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail, along with its security analysis and implementation. The experimental results based on mixture of chaotic maps approves the effectiveness of the proposed method and the implementation of the algorithm. This mixture application of chaotic maps shows advantages of large key space and high-level security. The ciphertext generated by this method is the same size as the plaintext and is suitable for practical use in the secure transmission of confidential information over the Internet
Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail
Holland, D. L.; Martin, R. F., Jr.; Burris, C.
2017-12-01
It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.
Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation
Mansingka, Abhinav S.
2012-05-01
This thesis presents a generalized approach for the fully digital design and implementation of chaos generators through the numerical solution of chaotic ordinary differential equations. In particular, implementations use the Euler approximation with a fixed-point twos complement number representation system for optimal hardware and performance. In general, digital design enables significant benefits in terms of power, area, throughput, reliability, repeatability and portability over analog implementations of chaos due to lower process, voltage and temperature sensitivities and easy compatibility with other digital systems such as microprocessors, digital signal processing units, communication systems and encryption systems. Furthermore, this thesis introduces the idea of implementing multidimensional chaotic systems rather than 1-D chaotic maps to enable wider throughputs and multiplier-free architectures that provide significant performance and area benefits. This work focuses efforts on the well-understood family of autonomous 3rd order "jerk" chaotic systems. The effect of implementation precision, internal delay cycles and external delay cycles on the chaotic response are assessed. Multiplexing of parameters is implemented to enable switching between chaotic and periodic modes of operation. Enhanced chaos generators that exploit long-term divergence in two identical systems of different precision are also explored. Digital design is shown to enable real-time controllability of 1D multiscroll systems and 4th order hyperchaotic systems, essentially creating non-autonomous chaos that has thus far been difficult to implement in the analog domain. Seven different systems are mathematically assessed for chaotic properties, implemented at the register transfer level in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA. The statistical properties of the output are rigorously studied using the NIST SP. 800-22 statistical testing suite. The output is
On nonlinear control design for autonomous chaotic systems of integer and fractional orders
International Nuclear Information System (INIS)
Ahmad, Wajdi M.; Harb, Ahmad M.
2003-01-01
In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations
Working Towards Führer: A Chaotic View
Cakar, Ulas
Leadership is a concept that has been discussed since the beginning of history. Even though there have been many theories in the field accepting leadership's role in bringing order, chaotic aspects of leadership are generally neglected. This chapter aims to examine the leadership beyond an orderly interpretation of universe. For this purpose, Third Reich period and leadership during this period will be examined. Ian Kershaw's "Working Towards Führer" concept provides a unique understanding of leadership concept. It goes beyond the dualist depiction of Third Reich, it does not state Adolf Hitler as an all powerful dictator, or a weak one. Rather, he expresses that due to the conditions in the Third Reich, Adolf Hitler was both of this. This complex situation can be understood deeper when it is examined through the lens of chaos theory. This study contributes to the field by being the first in using chaos theory for examining "Working Towards Führer" concept and its development. Seemingly orderly nature of synchronization process and its vortex will be shown. Adolf Hitler's storm spot position in the chaotic system and its dynamics are explained. War's entropic power and its effect on the downfall of the system is crucial in understanding this unique chaotic system. The chaotic pattern of "Working Towards Führer" offers an opportunity to analyze the complexities of the leadership concept.
International Nuclear Information System (INIS)
Akhtar, P.; Abbas, M.
2007-01-01
Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapour deposition method. The study concentrated on cathodic arc physical vapour deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MD's) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester and pin-on-disc machine, were used to analyze and quantify the following properties and parameters, surface morphology, thickness, hardness, adhesion and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MD's produced during the etching stage, protruded through the thin film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 macro m showed the most stable trend of COF versus sliding distance. (author)
Synchronization of a unified chaotic system and the application in secure communication
International Nuclear Information System (INIS)
Lu Junan; Wu Xiaoqun; Lue Jinhu
2002-01-01
This Letter further investigates the synchronization of a unified chaotic system via different methods. Several sufficient theorems for the synchronization of the unified chaotic system are deduced. A scheme of secure communication based on the synchronization of the unified chaotic system is presented. Numerical simulation shows its feasibility
Performance of Multi-chaotic PSO on a shifted benchmark functions set
Energy Technology Data Exchange (ETDEWEB)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan [Tomas Bata University in Zlín, Faculty of Applied Informatics Department of Informatics and Artificial Intelligence nám. T.G. Masaryka 5555, 760 01 Zlín (Czech Republic)
2015-03-10
In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions.
Performance of Multi-chaotic PSO on a shifted benchmark functions set
International Nuclear Information System (INIS)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-01-01
In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions
Jamming and chaotic dynamics in different granular systems
Maghsoodi, Homayoon; Luijten, Erik
Although common in nature and industry, the jamming transition has long eluded a concrete, mechanistic explanation. Recently, Banigan et al. (Nat. Phys. 9, 288-292, 2013) proposed a method for characterizing this transition in a granular system in terms of the system's chaotic properties, as quantified by the largest Lyapunov exponent. They demonstrated that in a two-dimensional shear cell the jamming transition coincides with the bulk density at which the system's largest Lyapunov exponent changes sign, indicating a transition between chaotic and non-chaotic regimes. To examine the applicability of this observation to realistic granular systems, we study a model that includes frictional forces within an expanded phase space. Furthermore, we test the generality of the relation between chaos and jamming by investigating the relationship between jamming and the chaotic properties of several other granular systems, notably sheared systems (Howell, D., Behringer R. P., Veje C., Phys. Rev. Lett. 82, 5241-5244, 1999) and systems with a free boundary. Finally, we quantify correlations between the largest Lyapunov vector and collective rearrangements of the system to demonstrate the predictive capabilities enabled by adopting this perspective of jamming.
The Hausdorff measure of chaotic sets of adjoint shift maps
Energy Technology Data Exchange (ETDEWEB)
Wang Huoyun [Department of Mathematics of Guangzhou University, Guangzhou 510006 (China)]. E-mail: wanghuoyun@sina.com; Song Wangan [Department of Computer, Huaibei Coal Industry Teacher College, Huaibei 235000 (China)
2006-11-15
In this paper, the size of chaotic sets of adjoint shift maps is estimated by Hausdorff measure. We prove that for any adjoint shift map there exists a finitely chaotic set with full Hausdorff measure.
Chaotic behaviour and controlling chaos in free electron lasers
International Nuclear Information System (INIS)
Wang Wenjie; Chen Shigang; Du Xiangwan; Wang Guangrui
1995-01-01
Chaos in free electron lasers (FEL) is reviewed. Special attention has been paid to the chaotic behaviour of the electrons and the laser field. The problem of controlling and utilizing chaotic motion of the electrons and the laser field has also been discussed. In order to find out the rules of instability and chaos in FEL, some typical methods of the chaotic theory are used. These methods include making the Poincare surface of section, drawing the phase space diagrams of the electron orbits, calculating the Liapunov exponents, and computing the power spectrum, etc. Finally, some problems in FEL research are discussed (103 refs., 54 figs.)
Transiently chaotic neural networks with piecewise linear output functions
Energy Technology Data Exchange (ETDEWEB)
Chen, S.-S. [Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan (China); Shih, C.-W. [Department of Applied Mathematics, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan (China)], E-mail: cwshih@math.nctu.edu.tw
2009-01-30
Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function.
Modified Baptista type chaotic cryptosystem via matrix secret key
International Nuclear Information System (INIS)
Ariffin, M.R.K.; Noorani, M.S.M.
2008-01-01
In 1998, M.S. Baptista proposed a chaotic cryptosystem using the ergodicity property of the simple low-dimensional and chaotic logistic equation. Since then, many cryptosystems based on Baptista's work have been proposed. However, over the years research has shown that this cryptosystem is predictable and vulnerable to attacks and is widely discussed. Among the weaknesses are the non-uniform distribution of ciphertexts and succumbing to the one-time pad attack (a type of chosen plaintext attack). In this Letter, our objective is to modify the chaotic cryptographic scheme proposed previously. We use a matrix secret key such that the cryptosystem would no longer succumb to the one-time pad attack
Describing chaotic attractors: Regular and perpetual points
Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz
2018-03-01
We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.
Characterizing the chaotic nature of ocean ventilation
MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew
2017-09-01
Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.
Spectral statistics of chaotic many-body systems
International Nuclear Information System (INIS)
Dubertrand, Rémy; Müller, Sebastian
2016-01-01
We derive a trace formula that expresses the level density of chaotic many-body systems as a smooth term plus a sum over contributions associated to solutions of the nonlinear Schrödinger (or Gross–Pitaevski) equation. Our formula applies to bosonic systems with discretised positions, such as the Bose–Hubbard model, in the semiclassical limit as well as in the limit where the number of particles is taken to infinity. We use the trace formula to investigate the spectral statistics of these systems, by studying interference between solutions of the nonlinear Schrödinger equation. We show that in the limits taken the statistics of fully chaotic many-particle systems becomes universal and agrees with predictions from the Wigner–Dyson ensembles of random matrix theory. The conditions for Wigner–Dyson statistics involve a gap in the spectrum of the Frobenius–Perron operator, leaving the possibility of different statistics for systems with weaker chaotic properties. (paper)
Localized chaoticity in two linearly coupled inverted double-well ...
African Journals Online (AJOL)
Two linearly coupled inverted double-well oscillators for a fixed energy and varying coupling strength were studied. The dynamics yielded a chaotic system in which the Poincare surface was characterised by two non-mixing regions, one of regular motion and the other region that became chaotic as the coupling increased.
Active control versus recursive backstepping control of a chaotic ...
African Journals Online (AJOL)
In this paper active controllers and recursive backstepping controllers are designed for a third order chaotic system. The performances of these controllers in the control of the dynamics of the chaotic system are investigated numerically and are found to be effective. Comparison of their transient performances show that the ...
Stabilizing unstable fixed points of chaotic maps via minimum entropy control
Energy Technology Data Exchange (ETDEWEB)
Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)
2008-08-15
In this paper the problem of chaos control in nonlinear maps using minimization of entropy function is investigated. Invariant probability measure of a chaotic dynamics can be used to produce an entropy function in the sense of Shannon. In this paper it is shown that how the entropy control technique is utilized for chaos elimination. Using only the measured states of a chaotic map the probability measure of the system is numerically estimated and this estimated measure is used to obtain an estimation for the entropy of the chaotic map. The control variable of the chaotic system is determined in such a way that the entropy function descends until the chaotic trajectory of the map is replaced with a regular one. The proposed idea is applied for stabilizing the fixed points of the logistic and the Henon maps as some cases of study. Simulation results show the effectiveness of the method in chaos rejection when only the statistical information is available from the under-study systems.
Chaotic dynamics of respiratory sounds
International Nuclear Information System (INIS)
Ahlstrom, C.; Johansson, A.; Hult, P.; Ask, P.
2006-01-01
There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D 2 ) and the Kaplan-Yorke dimension (D KY ) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data
Chaotic dynamics of respiratory sounds
Energy Technology Data Exchange (ETDEWEB)
Ahlstrom, C. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden) and Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)]. E-mail: christer@imt.liu.se; Johansson, A. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Hult, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden); Ask, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)
2006-09-15
There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D {sub 2}) and the Kaplan-Yorke dimension (D {sub KY}) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data.
Stability of operation versus temperature of a three-phase clock-driven chaotic circuit
International Nuclear Information System (INIS)
Zhou Ji-Chao; Son Hyunsik; Song Han Jung; Kim Namtae
2013-01-01
We evaluate the influence of temperature on the behavior of a three-phase clock-driven metal—oxide—semiconductor (MOS) chaotic circuit. The chaotic circuit consists of two nonlinear functions, a level shifter, and three sample and hold blocks. It is necessary to analyze a CMOS-based chaotic circuit with respect to variation in temperature for stability because the circuit is sensitive to the behavior of the circuit design parameters. The temperature dependence of the proposed chaotic circuit is investigated via the simulation program with integrated circuit emphasis (SPICE) using 0.6-μm CMOS process technology with a 5-V power supply and a 20-kHz clock frequency. The simulation results demonstrate the effects of temperature on the chaotic dynamics of the proposed chaotic circuit. The time series, frequency spectra, bifurcation phenomena, and Lyapunov exponent results are provided. (general)
Shape synchronization control for three-dimensional chaotic systems
International Nuclear Information System (INIS)
Huang, Yuanyuan; Wang, Yinhe; Chen, Haoguang; Zhang, Siying
2016-01-01
This paper aims to the three-dimensional continuous chaotic system and shape of the chaotic attractor by utilizing the basic theory of plane curves in classical differential geometry, the continuous controller is synthesized for the master–slave synchronization in shape. This means that the slave system can possess the same shape of state trajectory with the master system via the continuous controller. The continuous controller is composed of three sub-controllers, which respectively correspond to the master–slave synchronization in shape for the three projective curves of the chaotic attractor onto the three coordinate planes. Moreover, the proposed shape synchronization technique as well as application of control scheme to secure communication is also demonstrated in this paper, where numerical simulation results show the proposed control method works well.
Study of chaotic oscillations in practical work on radio physics
International Nuclear Information System (INIS)
Ezdov, A.A.; Il'in, V.A.; Petrova, E.B.
1995-01-01
A description is given of a laboratory study of chaotic oscillations in deterministic dynamical systems. This work utilizes mathematical modeling and a computer experiment, as well as a direct study of the chaotic behavior of nonlinear electrical circuits
Application of Multistage Homotopy Perturbation Method to the Chaotic Genesio System
Directory of Open Access Journals (Sweden)
M. S. H. Chowdhury
2012-01-01
Full Text Available Finding accurate solution of chaotic system by using efficient existing numerical methods is very hard for its complex dynamical behaviors. In this paper, the multistage homotopy-perturbation method (MHPM is applied to the Chaotic Genesio system. The MHPM is a simple reliable modification based on an adaptation of the standard homotopy-perturbation method (HPM. The HPM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the Chaotic Genesio system. Numerical comparisons between the MHPM and the classical fourth-order Runge-Kutta (RK4 solutions are made. The results reveal that the new technique is a promising tool for the nonlinear chaotic systems of ordinary differential equations.
Estimating parameters of chaotic systems synchronized by external driving signal
International Nuclear Information System (INIS)
Wu Xiaogang; Wang Zuxi
2007-01-01
Noise-induced synchronization (NIS) has evoked great research interests recently. Two uncoupled identical chaotic systems can achieve complete synchronization (CS) by feeding a common noise with appropriate intensity. Actually, NIS belongs to the category of external feedback control (EFC). The significance of applying EFC in secure communication lies in fact that the trajectory of chaotic systems is disturbed so strongly by external driving signal that phase space reconstruction attack fails. In this paper, however, we propose an approach that can accurately estimate the parameters of the chaotic systems synchronized by external driving signal through chaotic transmitted signal, driving signal and their derivatives. Numerical simulation indicates that this approach can estimate system parameters and external coupling strength under two driving modes in a very rapid manner, which implies that EFC is not superior to other methods in secure communication
Complex dynamics of a new 3D Lorenz-type autonomous chaotic ...
Indian Academy of Sciences (India)
Newautonomous chaotic system; chaotic attractors; Lyapunov stability theory; ultimate ... College of Mathematics and Statistics, Chongqing Technology and Business ... College of Electronic and Information Engineering, Southwest University, ...
Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system
Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad
2018-02-01
This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.
Microstructure of vapor deposited coatings on curved substrates
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)
2015-09-15
Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.
Microstructure of vapor deposited coatings on curved substrates
International Nuclear Information System (INIS)
Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.
2015-01-01
Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness
Fuzzy model-based adaptive synchronization of time-delayed chaotic systems
International Nuclear Information System (INIS)
Vasegh, Nastaran; Majd, Vahid Johari
2009-01-01
In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.
Stabilization and Synchronization of Memristive Chaotic Circuits by Impulsive Control
Directory of Open Access Journals (Sweden)
Limin Zou
2017-01-01
Full Text Available The purpose of this note is to study impulsive control and synchronization of memristor based chaotic circuits shown by Muthuswamy. We first establish a less conservative sufficient condition for the stability of memristor based chaotic circuits. After that, we discuss the effect of errors on stability. Meanwhile, we also discuss impulsive synchronization of two memristor based chaotic systems. Our results are more general and more applicable than the ones shown by Yang, Li, and Huang. Finally, several numerical examples are given to show the effectiveness of our methods.
Cognitive radio resource allocation based on coupled chaotic genetic algorithm
International Nuclear Information System (INIS)
Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang
2010-01-01
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed
Differential evolution optimization combined with chaotic sequences for image contrast enhancement
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Sauer, Joao Guilherme [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: joao.sauer@gmail.com; Rudek, Marcelo [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: marcelo.rudek@pucpr.br
2009-10-15
Evolutionary Algorithms (EAs) are stochastic and robust meta-heuristics of evolutionary computation field useful to solve optimization problems in image processing applications. Recently, as special mechanism to avoid being trapped in local minimum, the ergodicity property of chaotic sequences has been used in various designs of EAs. Three differential evolution approaches based on chaotic sequences using logistic equation for image enhancement process are proposed in this paper. Differential evolution is a simple yet powerful evolutionary optimization algorithm that has been successfully used in solving continuous problems. The proposed chaotic differential evolution schemes have fast convergence rate but also maintain the diversity of the population so as to escape from local optima. In this paper, the image contrast enhancement is approached as a constrained nonlinear optimization problem. The objective of the proposed chaotic differential evolution schemes is to maximize the fitness criterion in order to enhance the contrast and detail in the image by adapting the parameters using a contrast enhancement technique. The proposed chaotic differential evolution schemes are compared with classical differential evolution to two testing images. Simulation results on three images show that the application of chaotic sequences instead of random sequences is a possible strategy to improve the performance of classical differential evolution optimization algorithm.
When Darwin meets Lorenz: Evolving new chaotic attractors through genetic programming
International Nuclear Information System (INIS)
Pan, Indranil; Das, Saptarshi
2015-01-01
Highlights: •New 3D continuous time chaotic systems with analytical expressions are obtained. •The multi-gene genetic programming (MGGP) paradigm is employed to achieve this. •Extends earlier works for evolving generalised family of Lorenz attractors. •Over one hundred of new chaotic attractors along with their parameters are reported. •The MGGP method have the potential for finding other similar chaotic attractors. -- Abstract: In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone
International Nuclear Information System (INIS)
Theiler, J.; Eubank, S.
1993-01-01
A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is ''bleached''), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed
Chaotic attractors with separated scrolls
International Nuclear Information System (INIS)
Bouallegue, Kais
2015-01-01
This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This new approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results
International Nuclear Information System (INIS)
Wang Wen-Bo; Zhang Xiao-Dong; Chang Yuchan; Wang Xiang-Li; Wang Zhao; Chen Xi; Zheng Lei
2016-01-01
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. (paper)
Method to restore images from chaotic frequency-down-converted light using phase matching
International Nuclear Information System (INIS)
Andreoni, Alessandra; Puddu, Emiliano; Bondani, Maria
2006-01-01
We present an optical frequency-down-conversion process of the image of an object illuminated with chaotic light in which also the low-frequency field entering the second-order nonlinear crystal is chaotic. We show that the fulfillment of the phase-matching conditions by the chaotic interacting fields provides the rules to retrieve the object image by calculating suitable correlations of the local intensity fluctuations even if a single record of down-converted chaotic image is available
Detection of chaotic dynamics in human gait signals from mobile devices
DelMarco, Stephen; Deng, Yunbin
2017-05-01
The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.
Designing synchronization schemes for chaotic fractional-order unified systems
International Nuclear Information System (INIS)
Wang Junwei; Zhang Yanbin
2006-01-01
Synchronization in chaotic fractional-order differential systems is studied both theoretically and numerically. Two schemes are designed to achieve chaos synchronization of so-called unified chaotic systems and the corresponding numerical algorithms are established. Some sufficient conditions on synchronization are also derived based on the Laplace transformation theory. Computer simulations are used for demonstration
International Nuclear Information System (INIS)
Guillén, C; Herrero, J
2008-01-01
Transparent and conductive indium tin oxide (ITO) films with thickness between 0.2 and 0.7 µm were deposited by sputtering at room temperature on glass and polyethylene terephthalate (PET) substrates. All films were polycrystalline, with crystallite size increasing and lattice distortion decreasing when the film thickness was increased. Besides, transmission in the near-infrared region is found to be decreasing and carrier concentration increasing when the film thickness was increased. For the same thickness, the lattice distortion is slightly lower and the carrier concentration higher for the layers grown on PET substrates. A direct relationship between the lattice distortion and the free carrier concentration has been established, applying to the films grown on glass and plastic substrates. By adjusting ITO coating thickness, sheet resistance below 15 Ω sq −1 and average visible transmittance about 90% have been achieved by sputtering at room temperature
The anthracite of Nazar-Aylok Deposit
International Nuclear Information System (INIS)
Pachadzhanov, D.N.; Valiev, Yu.Ya.
2013-01-01
Present article is devoted to anthracite of Nazar-Aylok Deposit. The ash content, composition of coals of Nazar-Aylok Deposit and thickness of deposit were considered. The coal samples were studied by means of neutron activation analysis.
Observer based on sliding mode variable structure for synchronization of chaotic systems
International Nuclear Information System (INIS)
Yin Xunhe; Shan Xiuming; Ren Yong
2003-01-01
In the paper an approach, based on the state observer of sliding mode variable structure, is used for synchronizing chaotic systems. It does not require either the computation of the Lyapunov exponents, or the initial conditions belonging to the same basin of attraction as the existed approaches based on the state observer for synchronizing chaotic systems. The approach is more robust against noise and parameter mismatch than the existed approaches based on the state observer for synchronizing chaotic systems, because the former uses variable structure control, which is strong robust with respect to noise and parameter mismatch in the error dynamics, the later uses an appropriate choice of the feedback gain. Two well-known chaotic systems, a chaotic Roessler system and a hyperchaotic Roessler system are considered as illustrative examples to demonstrate the effectiveness of the used approach by numerical simulations
Constructing a one-way hash function based on the unified chaotic system
International Nuclear Information System (INIS)
Long Min; Peng Fei; Chen Guanrong
2008-01-01
A new one-way hash function based on the unified chaotic system is constructed. With different values of a key parameter, the unified chaotic system represents different chaotic systems, based on which the one-way hash function algorithm is constructed with three round operations and an initial vector on an input message. In each round operation, the parameters are processed by three different chaotic systems generated from the unified chaotic system. Feed-forwards are used at the end of each round operation and at the end of each element of the message processing. Meanwhile, in each round operation, parameter-exchanging operations are implemented. Then, the hash value of length 160 bits is obtained from the last six parameters. Simulation and analysis both demonstrate that the algorithm has great flexibility, satisfactory hash performance, weak collision property, and high security. (general)
Synchronization of hyperchaotic oscillators via single unidirectional chaotic-coupling
International Nuclear Information System (INIS)
Zou Yanli; Zhu Jie; Chen Guanrong; Luo Xiaoshu
2005-01-01
In this paper, synchronization of two hyperchaotic oscillators via a single variable's unidirectional coupling is studied. First, the synchronizability of the coupled hyperchaotic oscillators is proved mathematically. Then, the convergence speed of this synchronization scheme is analyzed. In order to speed up the response with a relatively large coupling strength, two kinds of chaotic coupling synchronization schemes are proposed. In terms of numerical simulations and the numerical calculation of the largest conditional Lyapunov exponent, it is shown that in a given range of coupling strengths, chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization. Furthermore, A circuit realization based on the chaotic synchronization scheme is designed and Pspice circuit simulation validates the simulated hyperchaos synchronization mechanism
Chaotic, fractional, and complex dynamics new insights and perspectives
Macau, Elbert; Sanjuan, Miguel
2018-01-01
The book presents nonlinear, chaotic and fractional dynamics, complex systems and networks, together with cutting-edge research on related topics. The fifteen chapters – written by leading scientists working in the areas of nonlinear, chaotic and fractional dynamics, as well as complex systems and networks – offer an extensive overview of cutting-edge research on a range of topics, including fundamental and applied research. These include but are not limited to aspects of synchronization in complex dynamical systems, universality features in systems with specific fractional dynamics, and chaotic scattering. As such, the book provides an excellent and timely snapshot of the current state of research, blending the insights and experiences of many prominent researchers.
Chaotic Flows Correlation effects and coherent structures
Bakunin, Oleg G
2011-01-01
The book introduces readers to and summarizes the current ideas and theories about the basic mechanisms for transport in chaotic flows. Typically no single paradigmatic approach exists as this topic is relevant for fields as diverse as plasma physics, geophysical flows and various branches of engineering. Accordingly, the dispersion of matter in chaotic or turbulent flows is analyzed from different perspectives. Partly based on lecture courses given by the author, this book addresses both graduate students and researchers in search of a high-level but approachable and broad introduction to the topic.
Higgs vacuum stability and modified chaotic inflation
Energy Technology Data Exchange (ETDEWEB)
Saha, Abhijit Kumar, E-mail: abhijit.saha@iitg.ernet.in; Sil, Arunansu, E-mail: asil@iitg.ernet.in
2017-02-10
The issue of electroweak vacuum stability is studied in presence of a scalar field which participates in modifying the minimal chaotic inflation model. It is shown that the threshold effect on the Higgs quartic coupling originating from the Higgs–inflaton sector interaction can essentially make the electroweak vacuum stable up to the Planck scale. On the other hand we observe that the new physics parameters in this combined framework are enough to provide deviation from the minimal chaotic inflation predictions so as to keep it consistent with recent observation by Planck 2015.
Improved numerical solutions for chaotic-cancer-model
Directory of Open Access Journals (Sweden)
Muhammad Yasir
2017-01-01
Full Text Available In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Improved numerical solutions for chaotic-cancer-model
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
An efficient chaotic source coding scheme with variable-length blocks
International Nuclear Information System (INIS)
Lin Qiu-Zhen; Wong Kwok-Wo; Chen Jian-Yong
2011-01-01
An efficient chaotic source coding scheme operating on variable-length blocks is proposed. With the source message represented by a trajectory in the state space of a chaotic system, data compression is achieved when the dynamical system is adapted to the probability distribution of the source symbols. For infinite-precision computation, the theoretical compression performance of this chaotic coding approach attains that of optimal entropy coding. In finite-precision implementation, it can be realized by encoding variable-length blocks using a piecewise linear chaotic map within the precision of register length. In the decoding process, the bit shift in the register can track the synchronization of the initial value and the corresponding block. Therefore, all the variable-length blocks are decoded correctly. Simulation results show that the proposed scheme performs well with high efficiency and minor compression loss when compared with traditional entropy coding. (general)
PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment
Energy Technology Data Exchange (ETDEWEB)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan [Tomas Bata University in Zlín, Faculty of Applied Informatics Department of Informatics and Artificial Intelligence nám. T.G. Masaryka 5555, 760 01 Zlín (Czech Republic)
2015-03-10
In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.
PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment
International Nuclear Information System (INIS)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-01-01
In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated
International Nuclear Information System (INIS)
Xu, Da; Wang, Ying; Liu, Linfei; Li, Yijie
2013-01-01
YBa 2 Cu 3 O 7−x (YBCO) films with different thicknesses were fabricated on buffered Ni–W tapes by pulsed laser deposition. The thickness dependences of microstructure and critical current density (J c ) of YBCO film were systematically investigated. The microstructure and surface morphology of YBCO film were characterized by X-ray diffraction, optical microscopy, field emission scanning electron microscopy and atomic force microscopy. And the critical current (I c ) of YBCO film was measured by the conventional four-probe method. We found that the full width at half maximum values of both omega and phi scan rocking curves, the content of a-axis oriented grain, and surface roughness of YBCO film all increased with augmenting the thickness of YBCO film. It was also found that with increasing the thickness of YBCO film from 0.3 μm to 1.5 μm, the I c of YBCO film increased from 72 A/cm to 248 A/cm and yet J c of YBCO film decreased from 2.1 × 10 6 A/cm 2 to 1.6 × 10 6 A/cm 2 . Our results indicated that the microstructure and J c of YBCO film were largely dependent on the thickness of YBCO film under the optimized deposition condition of substrate temperature. - Highlights: ► YBa 2 Cu 3 O 7−x (YBCO) films with different thicknesses were grown on metallic tapes. ► The texture and critical current were dependent on the thickness of YBCO film. ► Thickness effect was weakened by fabricating YBCO film layer by layer
Existence of a new three-dimensional chaotic attractor
International Nuclear Information System (INIS)
Wang Jiezhi; Chen Zengqiang; Yuan Zhuzhi
2009-01-01
In this paper, one heteroclinic orbit of a new three-dimensional continuous autonomous chaotic system, whose chaotic attractor belongs to the conjugate Lue attractor, is found. The series expression of the heteroclinic orbit of Shil'nikov type is derived by using the undetermined coefficient method. The uniform convergence of the precise series expansions of this heteroclinic orbits is proved. According to the Shil'nikov theorem, this system clearly has Smale horseshoes and the horseshoe chaos.
Electrophoretic Deposition of Gallium with High Deposition Rate
Directory of Open Access Journals (Sweden)
Hanfei Zhang
2014-12-01
Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.
Improving the pseudo-randomness properties of chaotic maps using deep-zoom
Machicao, Jeaneth; Bruno, Odemir M.
2017-05-01
A generalized method is proposed to compose new orbits from a given chaotic map. The method provides an approach to examine discrete-time chaotic maps in a "deep-zoom" manner by using k-digits to the right from the decimal separator of a given point from the underlying chaotic map. Interesting phenomena have been identified. Rapid randomization was observed, i.e., chaotic patterns tend to become indistinguishable when compared to the original orbits of the underlying chaotic map. Our results were presented using different graphical analyses (i.e., time-evolution, bifurcation diagram, Lyapunov exponent, Poincaré diagram, and frequency distribution). Moreover, taking advantage of this randomization improvement, we propose a Pseudo-Random Number Generator (PRNG) based on the k-logistic map. The pseudo-random qualities of the proposed PRNG passed both tests successfully, i.e., DIEHARD and NIST, and were comparable with other traditional PRNGs such as the Mersenne Twister. The results suggest that simple maps such as the logistic map can be considered as good PRNG methods.
Horseshoes in a Chaotic System with Only One Stable Equilibrium
Huan, Songmei; Li, Qingdu; Yang, Xiao-Song
To confirm the numerically demonstrated chaotic behavior in a chaotic system with only one stable equilibrium reported by Wang and Chen, we resort to Poincaré map technique and present a rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoes theory.
Directory of Open Access Journals (Sweden)
Fontanesi Luca
2012-11-01
Full Text Available Abstract Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07 Conclusions Further investigations are needed to evaluate the effects of the identified single nucleotide polymorphisms associated with backfat thickness on other traits as a pre-requisite for practical applications in breeding programs. Reported results could improve our understanding of the biology of fat metabolism and deposition that could also be relevant for other mammalian species including humans, confirming the role of neuronal genes on obesity.
Statistics of the electromagnetic response of a chaotic reverberation chamber
Directory of Open Access Journals (Sweden)
J.-B. Gros
2015-11-01
Full Text Available This article presents a study of the electromagnetic re- sponse of a chaotic reverberation chamber (RC in the pres- ence of losses. By means of simulations and of experi- ments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF. The present work illustrates that the uni- versal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electro- magnetic compatibility.
Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems
Directory of Open Access Journals (Sweden)
Cuimei Jiang
2015-07-01
Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.
Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
International Nuclear Information System (INIS)
Wang Rui; Sun Hui; Wang Jie-Zhi; Wang Lu; Wang Yan-Chao
2015-01-01
Modularized circuit designs for chaotic systems are introduced in this paper. Especially, a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation. In this paper, the detailed design procedures are described. Multisim simulations and physical experiments are conducted, and the simulation results are compared with Matlab simulation results for different system parameter pairs. These results are consistent with each other and they verify the existence of the hyper-chaotic attractor for this new hyper-chaotic system. (paper)
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control
Wave dynamics of regular and chaotic rays
International Nuclear Information System (INIS)
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space
Chaotic Fluid Mixing in Crystalline Sphere Arrays
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2017-12-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.
A new chaotic Hopfield network with piecewise linear activation function
International Nuclear Information System (INIS)
Peng-Sheng, Zheng; Wan-Sheng, Tang; Jian-Xiong, Zhang
2010-01-01
This paper presents a new chaotic Hopfield network with a piecewise linear activation function. The dynamic of the network is studied by virtue of the bifurcation diagram, Lyapunov exponents spectrum and power spectrum. Numerical simulations show that the network displays chaotic behaviours for some well selected parameters
Air-clad fibers: pump absorption assisted by chaotic wave dynamics?
DEFF Research Database (Denmark)
Mortensen, Niels Asger
2007-01-01
Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...
Finite-time synchronization of a class of autonomous chaotic systems
Indian Academy of Sciences (India)
Some criteria for achieving the finite-time synchronization of a class of autonomous chaotic systems are derived by the finite-time stability theory and Gerschgorin disc theorem. Numerical simulations are shown to illustrate the effectiveness of the proposed method. Keywords. Finite-time synchronization; autonomous chaotic ...
Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.
Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F
2014-02-07
Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.
Modification for collection of master-slave synchronized chaotic systems
International Nuclear Information System (INIS)
Guo Rongwei; Li Gang
2009-01-01
In this paper, based on the adaptive-feedback control method, we synchronize two identical chaotic systems. In comparison with the previous methods such as the open-plus-closed-loop (OPCL) method, the present control scheme is simple, and therefore it is easily implemented in practice. At last, a group of chaotic systems are used to demonstrate the effectiveness of this method.
A novel chaotic encryption scheme based on arithmetic coding
International Nuclear Information System (INIS)
Mi Bo; Liao Xiaofeng; Chen Yong
2008-01-01
In this paper, under the combination of arithmetic coding and logistic map, a novel chaotic encryption scheme is presented. The plaintexts are encrypted and compressed by using an arithmetic coder whose mapping intervals are changed irregularly according to a keystream derived from chaotic map and plaintext. Performance and security of the scheme are also studied experimentally and theoretically in detail
Application of chaotic ant swarm optimization in electric load forecasting
International Nuclear Information System (INIS)
Hong, W.-C.
2010-01-01
Support vector regression (SVR) had revealed strong potential in accurate electric load forecasting, particularly by employing effective evolutionary algorithms to determine suitable values of its three parameters. Based on previous research results, however, these employed evolutionary algorithms themselves have several drawbacks, such as converging prematurely, reaching slowly the global optimal solution, and trapping into a local optimum. This investigation presents an SVR-based electric load forecasting model that applied a novel algorithm, namely chaotic ant swarm optimization (CAS), to improve the forecasting performance by searching its suitable parameters combination. The proposed CAS combines with the chaotic behavior of single ant and self-organization behavior of ant colony in the foraging process to overcome premature local optimum. The empirical results indicate that the SVR model with CAS (SVRCAS) results in better forecasting performance than the other alternative methods, namely SVRCPSO (SVR with chaotic PSO), SVRCGA (SVR with chaotic GA), regression model, and ANN model.
Synchronization of the unified chaotic systems using a sliding mode controller
International Nuclear Information System (INIS)
Zribi, Mohamed; Smaoui, Nejib; Salim, Haitham
2009-01-01
The unified chaotic system incorporates the behaviors of the Lorenz, the Chen and the Lue chaotic systems. This paper deals with the synchronization of two identical unified chaotic systems where the slave system is assumed to have a single input. A sliding mode controller is proposed to synchronize the two systems. The asymptotic convergence to zero of the errors between the states of the master and the slave systems is shown. Simulations results are presented to illustrate the proposed controller; they indicate that the designed controller is able to synchronize the unified chaotic systems. Also, simulation results show that the proposed control scheme is robust to random bounded disturbances acting on the master system. Moreover, the proposed scheme is applied to the secure communications field, where simulation results indicate that the proposed scheme is effective.
On the Possible Origin of Chaotic Pulse Trains in Lightning Flashes
Directory of Open Access Journals (Sweden)
Mohd Muzafar Ismail
2017-02-01
Full Text Available In this study, electromagnetic field radiation bursts known as chaotic pulse trains (CPTs and regular pulse trains (RPTs generated by lightning flashes were analyzed. Through a numerical analysis it was found that a typical CPT could be generated by superimposing several RPTs onto each other. It is suggested that the chaotic pulse trains are created by a superposition of several regular pulse trains. Since regular pulse trains are probably created by dart or dart-stepped leaders or K-changes inside the cloud, chaotic pulse trains are caused by the superposition of electric fields caused by more than one of these leaders or K-changes propagating simultaneously. The hypothesis is supported by the fact that one can find regular pulse trains either in the beginning, middle or later stages of chaotic pulse trains.
Chaotic time series prediction: From one to another
International Nuclear Information System (INIS)
Zhao Pengfei; Xing Lei; Yu Jun
2009-01-01
In this Letter, a new local linear prediction model is proposed to predict a chaotic time series of a component x(t) by using the chaotic time series of another component y(t) in the same system with x(t). Our approach is based on the phase space reconstruction coming from the Takens embedding theorem. To illustrate our results, we present an example of Lorenz system and compare with the performance of the original local linear prediction model.
Directory of Open Access Journals (Sweden)
Cheng-Chang Yu
2014-01-01
Full Text Available Indium-nitrogen codoped zinc oxide (INZO thin films were fabricated by spray pyrolysis deposition technique on n-(111 Si substrate with different film thicknesses at 450°C using a precursor containing zinc acetate, ammonium acetate, and indium nitrate with 1 : 3 : 0.05 at.% concentration. The morphology and structure studies were carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The grain size of the films increased when increasing the film thickness. From XRD spectra, polycrystalline ZnO structure can be observed and the preferred orientation behavior varied from (002 to (101 as the film thickness increased. The concentration and mobility were investigated by Hall effect measurement. the p-type films with a hole mobility around 3 cm2V−1s−1 and hole concentration around 3×1019 cm−3 can be achieved with film thickness less than 385 nm. The n-type conduction with concentration 1×1020 cm−3 is observed for film with thickness 1089 nm. The defect states were characterized by photoluminescence. With temperature-dependent conductivity analysis, acceptor state with activation energy 0.139 eV dominate the p type conduction for thin INZO film. And the Zn-related shallow donors with activation energy 0.029 eV dominate the n-type conduction for the thick INZO film.
Chaotic Image Encryption Algorithm Based on Circulant Operation
Directory of Open Access Journals (Sweden)
Xiaoling Huang
2013-01-01
Full Text Available A novel chaotic image encryption scheme based on the time-delay Lorenz system is presented in this paper with the description of Circulant matrix. Making use of the chaotic sequence generated by the time-delay Lorenz system, the pixel permutation is carried out in diagonal and antidiagonal directions according to the first and second components. Then, a pseudorandom chaotic sequence is generated again from time-delay Lorenz system using all components. Modular operation is further employed for diffusion by blocks, in which the control parameter is generated depending on the plain-image. Numerical experiments show that the proposed scheme possesses the properties of a large key space to resist brute-force attack, sensitive dependence on secret keys, uniform distribution of gray values in the cipher-image, and zero correlation between two adjacent cipher-image pixels. Therefore, it can be adopted as an effective and fast image encryption algorithm.
Direct current magnetron sputter-deposited ZnO thin films
International Nuclear Information System (INIS)
Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar
2011-01-01
Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.
Chaotic dynamics from interspike intervals
DEFF Research Database (Denmark)
Pavlov, A N; Sosnovtseva, Olga; Mosekilde, Erik
2001-01-01
Considering two different mathematical models describing chaotic spiking phenomena, namely, an integrate-and-fire and a threshold-crossing model, we discuss the problem of extracting dynamics from interspike intervals (ISIs) and show that the possibilities of computing the largest Lyapunov expone...
Design of an image encryption scheme based on a multiple chaotic map
Tong, Xiao-Jun
2013-07-01
In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.
A comparative study of chaotic and white noise signals in digital watermarking
International Nuclear Information System (INIS)
Mooney, Aidan; Keating, John G.; Pitas, Ioannis
2008-01-01
Digital watermarking is an ever increasing and important discipline, especially in the modern electronically-driven world. Watermarking aims to embed a piece of information into digital documents which their owner can use to prove that the document is theirs, at a later stage. In this paper, performance analysis of watermarking schemes is performed on white noise sequences and chaotic sequences for the purpose of watermark generation. Pseudorandom sequences are compared with chaotic sequences generated from the chaotic skew tent map. In particular, analysis is performed on highpass signals generated from both these watermark generation schemes, along with analysis on lowpass watermarks and white noise watermarks. This analysis focuses on the watermarked images after they have been subjected to common image distortion attacks. It is shown that signals generated from highpass chaotic signals have superior performance than highpass noise signals, in the presence of such attacks. It is also shown that watermarks generated from lowpass chaotic signals have superior performance over the other signal types analysed
Directory of Open Access Journals (Sweden)
Roman Senkerik
2016-01-01
Full Text Available In this paper, evolutionary technique Differential Evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of selected discrete chaotic system, which is the two-dimensional Lozi map. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used within Chaos enhanced heuristic concept as the chaotic pseudo-random number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudo-random sequences given by chaotic map to help Differential evolution algorithm in searching for the best controller settings for the same chaotic system. The optimizations were performed for three different required final behavior of the chaotic system, and two types of developed cost function. To confirm the robustness of presented approach, comparisons with canonical DE strategy and PSO algorithm have been performed.
Inhalation of nanoplatelets - Theoretical deposition simulations.
Sturm, Robert
2017-12-01
Primary objective of the contribution was the theoretical prediction of nanoplatelet deposition in the human respiratory tract. Modeling was founded on the hypothetical inhalation of graphene nanoplatelets (GNP) measuring 0.01 and 0.1μm in thickness and adopting a projected area diameter of 1-30μm. Particle uptake was assumed to take place with inhalation flow rates of 250, 500, 750, and 1000cm 3 s -1 , respectively. For an appropriate description of pulmonary particle behavior, transport of GNP in a stochastic lung structure and deposition formulae based on analytical and numerical studies were presupposed. The results obtained from the theoretical approach clearly demonstrate that GNP with a thickness of 0.01μm deposit in the respiratory tract by 20-50%, whereas GNP with a thickness of 0.1μm exhibit a deposition of 20-90%. Larger platelets deposit with higher probability than small ones. Increase of inhalation flow rate is accompanied by decreased deposition in the case of thin GNP, whilst thicker GNP are preferably accumulated in the extrathoracic region. Generation-specific deposition ranges from 0.05 to 7% (0.01μm) and from 0.05 to 9%, with maximum values being obtained in airway generation 20. In proximal airway generations (0-10), deposition is increased with inhalation flow rate, whereas in intermediate to distal generations a reverse effect may be observed. Health consequences of GNP deposition in different lung compartments are subjected to an intense debate. Copyright © 2017. Published by Elsevier GmbH.
Kim, U J; Kim, Y C; Han, S K; Kang, K Y
1999-01-01
Thick films of the YBa sub 2 Cu sub 3 O subgamma sub - subdelta (YBCO) superconductor were prepared by using the electrophoretic deposition technique and a flexible wire as the substrate. The transition temperature of the wires was 91 K, the intragranular magnetic critical current density J sub c sub g sup m sup a sup g was about 10 sup 5 A/cm sup 2 at 77 K in a weak field, and the transport J sub c sup t sup r sup a sup n sup s was about 365 A/cm sup 2 at 77 K. We calculated the intergranular magnetic critical current J sub c sub J sup m sup a sup g and the activation energy from the AC-susceptibility measurements, and their values were about 444 A/cm sup 2 at 77 K and 2.02 eV, respectively.
Chaos synchronization of a new chaotic system via nonlinear control
International Nuclear Information System (INIS)
Zhang Qunjiao; Lu Junan
2008-01-01
This paper investigates chaos synchronization of a new chaotic system [Lue J, Chen G, Cheng D. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifurcat Chaos 2004;14:1507-37]. Two kinds of novel nonlinear controllers are designed based on the Lyapunov stability theory. It can be viewed as an improvement to the existing results of reference [Park JH. Chaos synchronization of a chaotic system via nonlinear control. Chaos, Solitons and Fractals 2005;25:579-84] because we use less controllers but realize a global and exponential asymptotical synchronization. Numerical simulations are provided to show the effectiveness and advantage of this method
Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems
International Nuclear Information System (INIS)
Hyun, Chang-Ho; Kim, Jae-Hun; Kim, Euntai; Park, Mignon
2006-01-01
This paper proposes a synchronization design scheme based on an alternative indirect adaptive fuzzy observer and its application to secure communication of chaotic systems. It is assumed that their states are unmeasurable and their parameters are unknown. Chaotic systems and the structure of the fuzzy observer are represented by the Takagi-Sugeno fuzzy model. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed system is guaranteed. Through this process, the asymptotic synchronization of chaotic systems is achieved. The proposed observer is applied to secure communications of chaotic systems and some numerical simulation results show the validity of theoretical derivations and the performance of the proposed observer
International Nuclear Information System (INIS)
Deng Bin; Wang Jiang; Fei Xiangyang
2006-01-01
Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller. In this paper, the backstepping control is used to synchronize two coupled chaotic neurons in external electrical stimulation. The coupled model is based on the nonlinear cable model and only one state variable can be controlled in practice. The backstepping design needs only one controller to synchronize two chaotic systems and it can be applied to a variety of chaotic systems whether they contain external excitation or not, so the two coupled chaotic neurons in external electrical stimulation can be synchronized perfectly by backstepping control. Numerical simulations demonstrate the effectiveness of this design
Chaotic logic gate: A new approach in set and design by genetic algorithm
International Nuclear Information System (INIS)
Beyki, Mahmood; Yaghoobi, Mahdi
2015-01-01
How to reconfigure a logic gate is an attractive subject for different applications. Chaotic systems can yield a wide variety of patterns and here we use this feature to produce a logic gate. This feature forms the basis for designing a dynamical computing device that can be rapidly reconfigured to become any wanted logical operator. This logic gate that can reconfigure to any logical operator when placed in its chaotic state is called chaotic logic gate. The reconfiguration realize by setting the parameter values of chaotic logic gate. In this paper we present mechanisms about how to produce a logic gate based on the logistic map in its chaotic state and genetic algorithm is used to set the parameter values. We use three well-known selection methods used in genetic algorithm: tournament selection, Roulette wheel selection and random selection. The results show the tournament selection method is the best method for set the parameter values. Further, genetic algorithm is a powerful tool to set the parameter values of chaotic logic gate
Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.
2009-02-01
Ba0.7Sr0.3TiO3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 °C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (˜0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.
International Nuclear Information System (INIS)
Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.
2009-01-01
Ba 0.7 Sr 0.3 TiO 3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 deg. C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (∼0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness
A novel grid multiwing chaotic system with only non-hyperbolic equilibria
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-05-01
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.
Synchronization of two chaotic systems: Dynamic compensator approach
International Nuclear Information System (INIS)
Chen, C.-K.; Lai, T.-W.; Yan, J.-J.; Liao, T.-L.
2009-01-01
This study is concerned with the identical synchronization problem for a class of chaotic systems. A dynamic compensator is proposed to achieve the synchronization between master and slave chaotic systems using only the accessible output variables. A sufficient condition is also proposed to ensure the global synchronization. Furthermore, the strictly positive real (SPR) restriction, which is normally required in most of the observer-based synchronization schemes, is released in our approach. Two numerical examples are included to illustrate the proposed scheme.
Barkai, E.
2002-01-01
We demonstrate aging behavior in a simple non-linear system. Our model is a chaotic map which generates deterministically sub-diffusion. Asymptotic behaviors of the diffusion process are described using aging continuous time random walks, introduced previously to model diffusion in glasses.
Adaptive observer based synchronization of a class of uncertain chaotic systems
International Nuclear Information System (INIS)
Bowong, S.; Yamapi, R.
2005-05-01
This study addresses the adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. For a class of uncertain chaotic systems with unknown parameters and external disturbances, a robust adaptive observer based response system is constructed to synchronize the uncertain chaotic system. Lyapunov stability theory and Barbalat lemma ensure the global synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of the Genesio-Tesi system verifies the effectiveness of the proposed method. (author)
Robust networked H∞ synchronization of nonidentical chaotic Lur'e systems
International Nuclear Information System (INIS)
Yang De-Dong
2014-01-01
We mainly investigate the robust networked H ∞ synchronization problem of nonidentical chaotic Lur'e systems. In the design of the synchronization scheme, some network characteristics, such as nonuniform sampling, transmission-induced delays, and data packet dropouts, are considered. The parameters of master—slave chaotic Lur'e systems often allow differences. The sufficient condition in terms of linear matrix inequality (LMI) is obtained to guarantee the dissipative synchronization of nonidentical chaotic Lur'e systems in network environments. A numerical example is given to illustrate the validity of the proposed method. (general)
Serrano, Ismael García; Sesé, Javier; Guillamón, Isabel; Suderow, Hermann; Vieira, Sebastián; Ibarra, Manuel Ricardo; De Teresa, José María
2016-01-01
We report efficient vortex pinning in thickness-modulated tungsten-carbon-based (W-C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W-C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).
Chaotic advection and heat transfer enhancement in Stokes flows
International Nuclear Information System (INIS)
Lefevre, A.; Mota, J.P.B.; Rodrigo, A.J.S.; Saatdjian, E.
2003-01-01
The heat transfer rate from a solid boundary to a highly viscous fluid can be enhanced significantly by a phenomenon which is called chaotic advection or Lagrangian turbulence. Although the flow is laminar and dominated by viscous forces, some fluid particle trajectories are chaotic due either to a suitable boundary displacement protocol or to a change in geometry. As in turbulent flow, the heat transfer rate enhancement between the boundary and the fluid is intimately linked to the mixing of fluid in the system. Chaotic advection in real Stokes flows, i.e. flows governed by viscous forces and that can be constructed experimentally, is reviewed in this paper. An emphasis is made on recent new results on 3-D time-periodic open flows which are particularly important in industry
A quantum particle swarm optimizer with chaotic mutation operator
International Nuclear Information System (INIS)
Coelho, Leandro dos Santos
2008-01-01
Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents a novel Quantum-behaved PSO (QPSO) using chaotic mutation operator. The application of chaotic sequences based on chaotic Zaslavskii map instead of random sequences in QPSO is a powerful strategy to diversify the QPSO population and improve the QPSO's performance in preventing premature convergence to local minima. The simulation results demonstrate good performance of the QPSO in solving a well-studied continuous optimization problem of mechanical engineering design
Geometrical origin of chaoticity in the bouncing ball billiard
International Nuclear Information System (INIS)
Mátyás, L.; Barna, I.F.
2011-01-01
Highlights: ► We study the possible separation of neighouring trajectories in the bouncing ball billiard. ► In a certain interval of frequencies semianalitical evaluations are possible. ► One may find a lower bound for the maximal Lyapunov exponent in case of a resonance. - Abstract: We present a study of the chaotic behaviour of the bouncing ball billiard. The work is realised on the purpose of finding at least certain causes of separation of the neighbouring trajectories. Having in view the geometrical construction of the system, we report a clear origin of chaoticity of the bouncing ball billiard. By this we claim that in case when the floor is made of arc of circles – in a certain interval of frequencies – one can give semi-analytical estimates on chaotic behaviour.
Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons
Energy Technology Data Exchange (ETDEWEB)
Barrio, Roberto, E-mail: rbarrio@unizar.es; Serrano, Sergio [Computational Dynamics Group, Departamento de Matemática Aplicada, GME and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Angeles Martínez, M. [Computational Dynamics Group, GME, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Shilnikov, Andrey [Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30078 (United States); Department of Computational Mathematics and Cybernetics, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod (Russian Federation)
2014-06-01
We study a plethora of chaotic phenomena in the Hindmarsh-Rose neuron model with the use of several computational techniques including the bifurcation parameter continuation, spike-quantification, and evaluation of Lyapunov exponents in bi-parameter diagrams. Such an aggregated approach allows for detecting regions of simple and chaotic dynamics, and demarcating borderlines—exact bifurcation curves. We demonstrate how the organizing centers—points corresponding to codimension-two homoclinic bifurcations—along with fold and period-doubling bifurcation curves structure the biparametric plane, thus forming macro-chaotic regions of onion bulb shapes and revealing spike-adding cascades that generate micro-chaotic structures due to the hysteresis.
Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons
International Nuclear Information System (INIS)
Barrio, Roberto; Serrano, Sergio; Angeles Martínez, M.; Shilnikov, Andrey
2014-01-01
We study a plethora of chaotic phenomena in the Hindmarsh-Rose neuron model with the use of several computational techniques including the bifurcation parameter continuation, spike-quantification, and evaluation of Lyapunov exponents in bi-parameter diagrams. Such an aggregated approach allows for detecting regions of simple and chaotic dynamics, and demarcating borderlines—exact bifurcation curves. We demonstrate how the organizing centers—points corresponding to codimension-two homoclinic bifurcations—along with fold and period-doubling bifurcation curves structure the biparametric plane, thus forming macro-chaotic regions of onion bulb shapes and revealing spike-adding cascades that generate micro-chaotic structures due to the hysteresis
A novel image encryption algorithm based on a 3D chaotic map
Kanso, A.; Ghebleh, M.
2012-07-01
Recently [Solak E, Çokal C, Yildiz OT Biyikoǧlu T. Cryptanalysis of Fridrich's chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich's algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.
Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2016-01-01
Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
Directory of Open Access Journals (Sweden)
Li-lian Huang
2013-01-01
Full Text Available The synchronization of nonlinear uncertain chaotic systems is investigated. We propose a sliding mode state observer scheme which combines the sliding mode control with observer theory and apply it into the uncertain chaotic system with unknown parameters and bounded interference. Based on Lyapunov stability theory, the constraints of synchronization and proof are given. This method not only can realize the synchronization of chaotic systems, but also identify the unknown parameters and obtain the correct parameter estimation. Otherwise, the synchronization of chaotic systems with unknown parameters and bounded external disturbances is robust by the design of the sliding surface. Finally, numerical simulations on Liu chaotic system with unknown parameters and disturbances are carried out. Simulation results show that this synchronization and parameter identification has been totally achieved and the effectiveness is verified very well.
Bifurcation Control of Chaotic Dynamical Systems
National Research Council Canada - National Science Library
Wang, Hua O; Abed, Eyad H
1992-01-01
A nonlinear system which exhibits bifurcations, transient chaos, and fully developed chaos is considered, with the goal of illustrating the role of two ideas in the control of chaotic dynamical systems...
Loess Thickness Variations Across the Loess Plateau of China
Zhu, Yuanjun; Jia, Xiaoxu; Shao, Mingan
2018-01-01
The soil thickness is very important for investigating and modeling soil-water processes, especially on the Loess Plateau of China with its deep loess deposit and limited water resources. A digital elevation map (DEM) of the Loess Plateau and neighborhood analysis in ArcGIS software were used to generate a map of loess thickness, which was then validated by 162 observations across the plateau. The generated loess thickness map has a high resolution of 100 m × 100 m. The map indicates that loess is thick in the central part of the plateau and becomes gradually shallower in the southeast and northwest directions. The areas near mountains and river basins have the shallowest loess deposit. The mean loess thickness is the deepest in the zones with 400-600-mm precipitation and decreases gradually as precipitation varies beyond this range. Our validation indicates that the map just slightly overestimates loess thickness and is reliable. The loess thickness is mostly between 0 and 350 m in the Loess Plateau region. The calculated mean loess thickness is 105.7 m, with the calibrated value being 92.2 m over the plateau exclusive of the mountain areas. Our findings provide very basic data of loess thickness and demonstrate great progress in mapping the loess thickness distribution for the plateau, which are valuable for a better study of soil-water processes and for more accurate estimations of soil water, carbon, and solute reservoirs in the Loess Plateau of China.
Directory of Open Access Journals (Sweden)
Roman Senkerik
2014-01-01
Full Text Available Evolutionary technique differential evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.
International Nuclear Information System (INIS)
Santos Coelho, Leandro dos
2009-01-01
Despite the popularity, the tuning aspect of proportional-integral-derivative (PID) controllers is a challenge for researchers and plant operators. Various controllers tuning methodologies have been proposed in the literature such as auto-tuning, self-tuning, pattern recognition, artificial intelligence, and optimization methods. Chaotic optimization algorithms as an emergent method of global optimization have attracted much attention in engineering applications. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool for engineering applications. In this paper, a tuning method for determining the parameters of PID control for an automatic regulator voltage (AVR) system using a chaotic optimization approach based on Lozi map is proposed. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Simulation results are promising and show the effectiveness of the proposed approach. Numerical simulations based on proposed PID control of an AVR system for nominal system parameters and step reference voltage input demonstrate the good performance of chaotic optimization.
Large Area Deposition of MoS2 by Pulsed Laser Deposition with In-Situ Thickness Control
Serna, Martha I.
2016-05-24
A scalable and catalyst-free method to deposit stoichiometric Molybdenum Disulfide (MoS2) films over large areas is reported with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation including single crystals (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2). The films are deposited using carefully designed MoS2 targets fabricated with excess of sulfur (S) and variable MoS2 and S particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 104 Ω cm-1 were achieved. The MoS2 stoichiometry was as confirmed by High Resolution Rutherford Backscattering Spectrometry (HRRBS). With the method reported here, in situ graded MoS2 films ranging from ~1 to 10 monolayers can also be deposited.
Large Area Deposition of MoS2 by Pulsed Laser Deposition with In-Situ Thickness Control
Serna, Martha I.; Yoo, Seong H.; Moreno, Salvador; Xi, Yang; Oviedo, Juan Pablo; Choi, Hyunjoo; Alshareef, Husam N.; Kim, Moon J.; Minary-Jolandan, Majid; Quevedo-Lopez, Manuel A.
2016-01-01
A scalable and catalyst-free method to deposit stoichiometric Molybdenum Disulfide (MoS2) films over large areas is reported with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation including single crystals (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2). The films are deposited using carefully designed MoS2 targets fabricated with excess of sulfur (S) and variable MoS2 and S particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 104 Ω cm-1 were achieved. The MoS2 stoichiometry was as confirmed by High Resolution Rutherford Backscattering Spectrometry (HRRBS). With the method reported here, in situ graded MoS2 films ranging from ~1 to 10 monolayers can also be deposited.
Energy Technology Data Exchange (ETDEWEB)
Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)
1981-09-01
A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.
Identification of discrete chaotic maps with singular points
Directory of Open Access Journals (Sweden)
P. G. Akishin
2001-01-01
Full Text Available We investigate the ability of artificial neural networks to reconstruct discrete chaotic maps with singular points. We use as a simple test model the Cusp map. We compare the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet Neural Network. The numerical scheme for the accurate determination of a singular point is also developed. We show that combining a neural network with the numerical algorithm for the determination of the singular point we are able to accurately approximate discrete chaotic maps with singularities.
International Nuclear Information System (INIS)
Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.
2005-01-01
This paper describes the security weakness of a recently proposed improved chaotic encryption method based on the modulation of a signal generated by a chaotic system with an appropriately chosen scalar signal. The aim of the improvement is to avoid the breaking of chaotic encryption schemes by means of the return map attack introduced by Perez and Cerdeira. A method of attack based on taking the absolute value of the ciphertext is presented, that allows for the cancellation of the modulation scalar signal and the determination of some system parameters that play the role of system key. The proposed improved method is shown to be compromised without any knowledge of the chaotic system parameter values and even without knowing the transmitter structure
A survey of Wien bridge-based chaotic oscillators: Design and experimental issues
International Nuclear Information System (INIS)
Kilic, Recai; Yildirim, Fatma
2008-01-01
This paper presents a comparative study on design and implementation of Wien type chaotic oscillators. By making a collection of almost all Wien bridge-based chaotic circuits, we have investigated these oscillators in terms of chaotic dynamics, circuit structures, active building blocks, nonlinear element structures and operating frequency by using PSpice simulations and laboratory experiments. In addition to this comparative investigation, we present our two basic experimental contributions to referred implementations. While the first of our experimental contributions consists of the experimentally implementation of CFOA-based Chua's circuit modified for very high chaotic oscillations, the scope of the second is to experimentally implement a Wien type high frequency chaos generator, which has the diode-inductor composite, in the inductorless form by using CFOA-based synthetic inductor
Chaotic Image Encryption Based on Running-Key Related to Plaintext
Directory of Open Access Journals (Sweden)
Cao Guanghui
2014-01-01
Full Text Available In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack.
Chaotic image encryption based on running-key related to plaintext.
Guanghui, Cao; Kai, Hu; Yizhi, Zhang; Jun, Zhou; Xing, Zhang
2014-01-01
In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack.
Chaotic Fluid Mixing in Crystalline Sphere Arrays
Turuban, Regis; Lester, Daniel; Meheust, Yves; Le Borgne, Tanguy
2017-11-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insights are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures. The authors acknowledge the support of ERC project ReactiveFronts (648377).
Transient chaotic transport in dissipative drift motion
Energy Technology Data Exchange (ETDEWEB)
Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)
2016-04-22
Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.
Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems
International Nuclear Information System (INIS)
Yau, H.-T.; Chen, C.-L.
2006-01-01
This paper proposes a chattering-free fuzzy sliding-mode control (FSMC) strategy for uncertain chaotic systems. A fuzzy logic control is used to replace the discontinuous sign function of the reaching law in traditional sliding-mode control (SMC), and hence a control input without chattering is obtained in the chaotic systems with uncertainties. Base on the Lyapunov stability theory, we address the design schemes of integration fuzzy sliding-mode control, where the reaching law is proposed by a set of linguistic rules and the control input is chattering free. The Genesio chaotic system is used to test the proposed control strategy and the simulation results show the FSMC not only can control the uncertain chaotic behaviors to a desired state without oscillator very fast, but also the switching function is smooth without chattering. This result implies that this strategy is feasible and effective for chaos control
A numeric-analytic method for approximating the chaotic Chen system
International Nuclear Information System (INIS)
Mossa Al-sawalha, M.; Noorani, M.S.M.
2009-01-01
The epitome of this paper centers on the application of the differential transformation method (DTM) the renowned Chen system which is described as a three-dimensional system of ODEs with quadratic nonlinearities. Numerical comparisons are made between the DTM and the classical fourth-order Runge-Kutta method (RK4). Our work showcases the precision of the DTM as the Chen system transforms from a non-chaotic system to a chaotic one. Since the Lyapunov exponent for this system is much higher compared to other chaotic systems, we shall highlight the difficulties of the simulations with respect to its accuracy. We wrap up our investigations to reveal that this direct symbolic-numeric scheme is effective and accurate.
Nonlinear mode conversion with chaotic soliton generation at plasma resonance
International Nuclear Information System (INIS)
Pietsch, H.; Laedke, E.W.; Spatschek, K.H.
1993-01-01
The resonant absorption of electromagnetic waves near the critical density in inhomogeneous plasmas is studied. A driven nonlinear Schroedinger equation for the mode-converted oscillations is derived by multiple-scaling techniques. The model is simulated numerically. The generic transition from a stationary to a time-dependent solution is investigated. Depending on the parameters, a time-chaotic behavior is found. By a nonlinear analysis, based on the inverse scattering transform, solitons of a corresponding integrable equation are identified as the dominant coherent structures of the chaotic dynamics. Finally, a map is presented which predicts chaotic soliton generation and emission at the critical density. Its qualitative behavior, concerning the bifurcation points, is in excellent agreement with the numerical simulations
An X-ray fluorescence method for the determination of metals thicknesses
International Nuclear Information System (INIS)
Vazquez, Cristina; Leyt, D.V. de; Riveros, J.A.
1987-01-01
An absolute method for the determination of the thickness of a metal film deposited on a metallic substrate is described. The method is based on the measurement of fluorescent intensity ratios for two lines from the substrate element. Additionally, the proposed method can be employed to determine the density of the deposited material or the incident angle of primary radiation and take off angle, if the metal film thickness is known. (Author) [es
Energy Technology Data Exchange (ETDEWEB)
Kavitha, Ayyalu; Kannan, Raman [Anna Univ., Dindigul (India). Dept. of Physics; Loganathan, Subramani [Titan Industries, Hosur, Tamilnadu (India). Ion Plating Dept.
2016-07-01
Zirconium nitride (ZrN) thin films were prepared on stainless steel (SS) substrates by medium frequency (MF) reactive sputtering with gas ion source (GIS) by varying the deposition time and obtained thickness (t{sub ZrN}) in the range of 1.25 to 3.24 μm. The effect of thickness on the structural and microstructural properties was studied using XRD and AFM. XRD characterization revealed that the texture of the ZrN thin films changes as a function of thickness. Both, the (111) and (200) peak, appear initially and (111) becomes more intense with increasing t{sub ZrN}. AFM imaging revealed that the ZrN thin film coated with t{sub ZrN} ∼ 3.24 μm shows larger grains that are uniformly distributed over the surface. An average hardness value of 19.79 GPa was observed for ZrN thin films having t{sub ZrN} ∼ 3.24 μm. The ZrN thin films having t{sub ZrN} ∼ 3.24 μm exhibits better adhesion strength up to 20 N. The electrochemical polarization studies indicated that the ZrN thin film having larger thickness shows improved corrosion resistance compared to SS in 3.5 % NaCl solution.
Partial synchronization and spontaneous spatial ordering in coupled chaotic systems
International Nuclear Information System (INIS)
Ying Zhang; Gang Hu; Cerdeira, Hilda A.; Shigang Chen; Braun, Thomas; Yugui Yao
2000-11-01
A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)
Synchronization and an application of a novel fractional order King Cobra chaotic system
Energy Technology Data Exchange (ETDEWEB)
Muthukumar, P., E-mail: muthukumardgl@gmail.com; Balasubramaniam, P., E-mail: balugru@gmail.com [Department of Mathematics, Gandhigram Rural Institute‐Deemed University, Gandhigram 624 302, Tamilnadu (India); Ratnavelu, K., E-mail: kuru052001@gmail.com [Faculty of Science, Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness of the proposed theoretical results.
Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.
2012-01-01
Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control
Thick and low-stress PECVD amorphous silicon for MEMS applications
International Nuclear Information System (INIS)
Iliescu, Ciprian; Chen Bangtao
2008-01-01
This paper presents a solution for the deposition of thick amorphous silicon (α-Si:H) in PECVD reactors for MEMS applications, such as sacrificial layer or mask layer for dry or wet etching of glass. This achievement was possible by tuning the deposition parameters to a 'zero' value of the residual stress in the α-Si:H layer. The influence of the process parameters, such as power, frequency mode, temperature, pressure and SiH 4 /Ar flow rates for tuning the residual stress and for a good deposition rate is analyzed. The deposition of low-stress and thick (more than 12 µm in our case) α-Si:H layers was possible without generation of hillock defects (previously reported in literature for layers thicker then 2 µm). Finally, the paper presents some MEMS applications of such a deposited α-Si:H layer: masking layer for deep wet etching as well as dry etching of glass, and sacrificial layer for dry or wet release
Aydiner, Ekrem
2018-01-15
In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de >-1, w dm ≥ 0, w m ≥ 0 and w r ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.
Scaling of chaotic multiplicity: A new observation in high-energy interactions
International Nuclear Information System (INIS)
Ghosh, D.; Ghosh, P.; Roy, J.
1990-01-01
We analyze high-energy-interaction data to study the dependence of chaotic multiplicity on the pseudorapidity window and propose a new scaling function bar Ψ(bar z)=left-angle n 1 right-angle/left-angle n right-angle max where left-angle n 1 right-angle is the chaotic multiplicity and bar z=left-angle n right-angle/left-angle n right-angle max is the reduced multiplicity, following the quantum-optical concept of particle production. It has been observed that the proposed ''chaotic multiplicity scaling'' is obeyed by pp, p bar p, and AA collisions at different available energies
Application of fixed point theory to chaotic attractors of forced oscillators
International Nuclear Information System (INIS)
Stewart, H.B.
1990-11-01
A review of the structure of chaotic attractors of periodically forced second order nonlinear oscillators suggests that the theory of fixed points of transformations gives information about the fundamental topological structure of attractors. First a simple extension of the Levinson index formula is proved. Then numerical evidence is used to formulate plausible conjectures about absorbing regions containing chaotic attractors in forced oscillators. Applying the Levinson formula suggests a fundamental relation between the number of fixed points or periodic points in a section of the chaotic attractor on the one hand, and a topological invariant of an absorbing region on the other hand. (author)
Adaptive control of chaotic systems with stochastic time varying unknown parameters
Energy Technology Data Exchange (ETDEWEB)
Salarieh, Hassan [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu
2008-10-15
In this paper based on the Lyapunov stability theorem, an adaptive control scheme is proposed for stabilizing the unstable periodic orbits (UPO) of chaotic systems. It is assumed that the chaotic system has some linearly dependent unknown parameters which are stochastically time varying. The stochastic parameters are modeled through the Weiner process derivative. To demonstrate the effectiveness of the proposed technique it has been applied to the Lorenz, Chen and Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in stabilizing the UPO of chaotic systems in noisy environment.
Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto
2018-03-01
A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.
International Nuclear Information System (INIS)
Salito, A.; Tului, M.; Casadei, F.
1998-01-01
Several Divertor components in the new generation of nuclear fusion reactors need to be protected against ion sputtering. Particularly copper based (Cu) material is very sensitive to this sputtering process. A solution to overcome such component wear and plasma contamination is to protect the copper substrate with a thick tungsten (W) functional coating. The main difficulty to produce such components is the significant difference in the coating thermomechanical properties between W and Cu. The Vacuum Plasma Spraying coating process (VPS) is a very flexible new economical way to find a solution to the above problem. To optimise the adhesion and stress release properties between the Cu-alloy substrate and the W coating, it is possible to deposit an interlayer as a bond coat between both materials. The aim of this study is to determine the maximum of the residual stresses located between the Cu substrate and the W coating using finite element analysis. The results have been used to select different types of bond coat for the experimental development of thick W coating (>3 mm) on to mock-ups for the Divertor Channel of the ITER project. (author)
Role of the Absorbing Area in Chaotic Synchronization
DEFF Research Database (Denmark)
Maistrenko, Yu.L.; Maistrenko, V.L.; Popovich, A.
1998-01-01
When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area for the e......When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area...
Stabilization at almost arbitrary points for chaotic systems
International Nuclear Information System (INIS)
Huang, C.-S.; Lian, K.-Y.; Su, C.-H.; Wu, J.-W.
2008-01-01
We consider how to design a feasible control input for chaotic systems via a suitable input channel to achieve the stabilization at arbitrary points. Regarding the nonlinear systems without naturally defined input vectors, we propose a local stabilization controller which works for almost arbitrary points. Subsequently, according to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Hence the global stabilization is achieved whereas the control effort of the hybrid controller is extremely low
Controlling chaotic and hyperchaotic systems via energy regulation
International Nuclear Information System (INIS)
Laval, L.; M'Sirdi, N.K.
2003-01-01
This paper focuses on a new control approach to steer trajectories of chaotic or hyperchaotic systems towards stable periodic orbits or stationary points of interest. This approach mainly consists in a variable structure control (VSC) that we extend by explicitly considering the system energy as basis for both controller design and system stabilization. In this paper, we present some theoretical results for a class of nonlinear (possibly chaotic or hyperchaotic) systems. Then some capabilities of the proposed approach are illustrated through examples related to a four-dimensional hyperchaotic system
A simple observer of the generalized Chen chaotic systems
International Nuclear Information System (INIS)
Sun, Y.-J.
2009-01-01
In this paper, the generalized Chen chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a simple observer for the generalized Chen chaotic system is proposed to guarantee the global exponential stability of the resulting error system. Furthermore, the guaranteed exponential convergence rate can be correctly estimated. Finally, a numerical example is provided to illustrate the use of the main result.
Cryptanalysis of a spatiotemporal chaotic cryptosystem
International Nuclear Information System (INIS)
Rhouma, Rhouma; Belghith, Safya
2009-01-01
This paper proposes three different attacks on a recently proposed chaotic cryptosystem in [Li P, Li Z, Halang WA, Chen G. A stream cipher based on a spatiotemporal chaotic system. Chaos, Solitons and Fractals 2007;32:1867-76]. The cryptosystem under study displays weakness in the generation of the keystream. The encryption is made by generating a keystream mixed with blocks generated from the plaintext. The so obtained keystream remains unchanged for every encryption procedure. Moreover, its generation does neither depend on the plaintext nor on the ciphertext, that's to say, the keystream remains unchangeable for every plaintext with the same length. Guessing the keystream leads to guessing the key. This paper presents three possible attacks able to break the whole cryptosystem based on this drawback in generating the keystream.
A survey of Wien bridge-based chaotic oscillators: Design and experimental issues
Energy Technology Data Exchange (ETDEWEB)
Kilic, Recai [Erciyes University, Department of Electrical and Electronic Engineering, 38039 Kayseri (Turkey)], E-mail: kilic@erciyes.edu.tr; Yildirim, Fatma [Erciyes University, Civil Aviation School, 38039 Kayseri (Turkey)
2008-12-15
This paper presents a comparative study on design and implementation of Wien type chaotic oscillators. By making a collection of almost all Wien bridge-based chaotic circuits, we have investigated these oscillators in terms of chaotic dynamics, circuit structures, active building blocks, nonlinear element structures and operating frequency by using PSpice simulations and laboratory experiments. In addition to this comparative investigation, we present our two basic experimental contributions to referred implementations. While the first of our experimental contributions consists of the experimentally implementation of CFOA-based Chua's circuit modified for very high chaotic oscillations, the scope of the second is to experimentally implement a Wien type high frequency chaos generator, which has the diode-inductor composite, in the inductorless form by using CFOA-based synthetic inductor.
Anticipating synchronization in a chain of chaotic oscillators with switching parameters
Energy Technology Data Exchange (ETDEWEB)
Pyragienė, T., E-mail: tatjana.pyragiene@ftmc.lt; Pyragas, K.
2015-12-18
A new coupling scheme for anticipating synchronization of chaotic systems is proposed. The scheme consists of a master system and two in series coupled slave systems with periodically switching parameters. The scheme does not require the presence of any time-delay terms either in a master or in slave systems and provides long-term anticipation. The value of anticipation time as well as the conditions of synchronization are derived in an analytical form. Analytical results are tested by numerical experiments with the chaotic Rössler and Lorenz systems as well as the Hindmarsh–Rose neuron in a regime of chaotic bursting. Also a robustness of the scheme with respect to parameter mismatch and noise is demonstrated. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of three coupled systems with periodically switching parameters. • Long-term anticipation is achieved without using time-delay terms. • The method is verified for the Rössler, Lorenz and Hindmarsh–Rose neuron systems.
Anticipating synchronization in a chain of chaotic oscillators with switching parameters
International Nuclear Information System (INIS)
Pyragienė, T.; Pyragas, K.
2015-01-01
A new coupling scheme for anticipating synchronization of chaotic systems is proposed. The scheme consists of a master system and two in series coupled slave systems with periodically switching parameters. The scheme does not require the presence of any time-delay terms either in a master or in slave systems and provides long-term anticipation. The value of anticipation time as well as the conditions of synchronization are derived in an analytical form. Analytical results are tested by numerical experiments with the chaotic Rössler and Lorenz systems as well as the Hindmarsh–Rose neuron in a regime of chaotic bursting. Also a robustness of the scheme with respect to parameter mismatch and noise is demonstrated. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of three coupled systems with periodically switching parameters. • Long-term anticipation is achieved without using time-delay terms. • The method is verified for the Rössler, Lorenz and Hindmarsh–Rose neuron systems.
Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin
International Nuclear Information System (INIS)
Ermann, Leonardo; Paz, Juan Pablo; Saraceno, Marcos
2006-01-01
We study the differences between the processes of decoherence induced by chaotic and regular environments. For this we analyze a family of simple models that contain both regular and chaotic environments. In all cases the system of interest is a ''quantum walker,'' i.e., a quantum particle that can move on a lattice with a finite number of sites. The walker interacts with an environment which has a D-dimensional Hilbert space. The results we obtain suggest that regular and chaotic environments are not distinguishable from each other in a (short) time scale t*, which scales with the dimensionality of the environment as t*∝log 2 (D). However, chaotic environments continue to be effective over exponentially longer time scales while regular environments tend to reach saturation much sooner. We present both numerical and analytical results supporting this conclusion. The family of chaotic evolutions we consider includes the so-called quantum multibaker map as a particular case
International Nuclear Information System (INIS)
Jiang Yan
2014-01-01
The ore aquifer of a sandstone-type uranium deposits is thick, the grade, and uranium amount per square meter is low. To demonstrate the economic rationality of the in-situ leaching deposit, the Pumping test on the spot, recovery of water levels test, Pumping test and Injection test, Injection test in a Drilling hole, the pumping and injection balance test are carried out. And the hydro geological parameters of mineral aquifer are acquired. The parameters includes coefficient of transmissibility, Coefficient of permeability, Specific discharge of a well and Water injection. Radius of influence etc. The relation between discharge of drilling and Drawdown is researched. The capability of pumping and injection by a drilling hole is determined. The Hydraulic between the aquifer with mineral and the upper and lower aquifer is researched. The reasonable Mining drawdown is testified, the hydrogeological conditions of in-Situ leaching of the mining deposit is found out, this provides necessary parameters and basis for this kind of Situ-leach uranium mining wells, the designing of Spacing of wells, and the economic evaluation of In-situ leaching technology. (author)
Directory of Open Access Journals (Sweden)
S. Vaidyanathan
2013-09-01
Full Text Available This research work describes the modelling of two novel 3-D chaotic systems, the first with a hyperbolic sinusoidal nonlinearity and two quadratic nonlinearities (denoted as system (A and the second with a hyperbolic cosinusoidal nonlinearity and two quadratic nonlinearities (denoted as system (B. In this work, a detailed qualitative analysis of the novel chaotic systems (A and (B has been presented, and the Lyapunov exponents and Kaplan-Yorke dimension of these chaotic systems have been obtained. It is found that the maximal Lyapunov exponent (MLE for the novel chaotic systems (A and (B has a large value, viz. for the system (A and for the system (B. Thus, both the novel chaotic systems (A and (B display strong chaotic behaviour. This research work also discusses the problem of finding adaptive controllers for the global chaos synchronization of identical chaotic systems (A, identical chaotic systems (B and nonidentical chaotic systems (A and (B with unknown system parameters. The adaptive controllers for achieving global chaos synchronization of the novel chaotic systems (A and (B have been derived using adaptive control theory and Lyapunov stability theory. MATLAB simulations have been shown to illustrate the novel chaotic systems (A and (B, and also the adaptive synchronization results derived for the novel chaotic systems (A and (B.
Synchronization of chaotic neural networks via output or state coupling
International Nuclear Information System (INIS)
Lu Hongtao; Leeuwen, C. van
2006-01-01
We consider the problem of global exponential synchronization between two identical chaotic neural networks that are linearly and unidirectionally coupled. We formulate a general framework for the synchronization problem in which one chaotic neural network, working as the driving system (or master), sends its output or state values to the other, which serves as the response system (or slave). We use Lyapunov functions to establish general theoretical conditions for designing the coupling matrix. Neither symmetry nor negative (positive) definiteness of the coupling matrix are required; under less restrictive conditions, the two coupled chaotic neural networks can achieve global exponential synchronization regardless of their initial states. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws
Computationally Efficient Chaotic Spreading Sequence Selection for Asynchronous DS-CDMA
Directory of Open Access Journals (Sweden)
Litviņenko Anna
2017-12-01
Full Text Available The choice of the spreading sequence for asynchronous direct-sequence code-division multiple-access (DS-CDMA systems plays a crucial role for the mitigation of multiple-access interference. Considering the rich dynamics of chaotic sequences, their use for spreading allows overcoming the limitations of the classical spreading sequences. However, to ensure low cross-correlation between the sequences, careful selection must be performed. This paper presents a novel exhaustive search algorithm, which allows finding sets of chaotic spreading sequences of required length with a particularly low mutual cross-correlation. The efficiency of the search is verified by simulations, which show a significant advantage compared to non-selected chaotic sequences. Moreover, the impact of sequence length on the efficiency of the selection is studied.
Hierarchy of rational order families of chaotic maps with an invariant ...
Indian Academy of Sciences (India)
scribe the dynamic behavior of chaotic maps using Kolmogorov–Sinai ... we have calculated the invariant measure of the rational order families of chaotic ... simultaneous production and consumption of entropy, we need to replace xn+1 ..... partition or, the average amount of information needed to locate the system in state.
Chaos synchronization of a chaotic system via nonlinear control
International Nuclear Information System (INIS)
Park, Ju H.
2005-01-01
In this letter, the problem of chaos synchronization of a chaotic system which is proposed by Lue et al. [Int J Bifurcat Chaos 2004;14:1507] is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived
An exponential observer for the generalized Rossler chaotic system
International Nuclear Information System (INIS)
Sun, Y.-J.
2009-01-01
In this paper, the generalized Rossler chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a state observer for the generalized Rossler chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be arbitrarily pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.
CMAC-based adaptive backstepping synchronization of uncertain chaotic systems
International Nuclear Information System (INIS)
Lin, C.-M.; Peng, Y.-F.; Lin, M.-H.
2009-01-01
This study proposes an adaptive backstepping control system for synchronizing uncertain chaotic system by using cerebellar model articulation controller (CMAC). CMAC is a nonlinear network with simple computation, good generalization capability and fast learning property. The proposed CMAC-based adaptive backstepping control (CABC) system uses backstepping method and adaptive cerebellar model articulation controller (ACMAC) for synchronizing uncertain chaotic system. Finally, simulation results for the Genesio system are presented to illustrate the effectiveness of the proposed control system.
Chaotic Multiquenching Annealing Applied to the Protein Folding Problem
Directory of Open Access Journals (Sweden)
Juan Frausto-Solis
2014-01-01
Full Text Available The Chaotic Multiquenching Annealing algorithm (CMQA is proposed. CMQA is a new algorithm, which is applied to protein folding problem (PFP. This algorithm is divided into three phases: (i multiquenching phase (MQP, (ii annealing phase (AP, and (iii dynamical equilibrium phase (DEP. MQP enforces several stages of quick quenching processes that include chaotic functions. The chaotic functions can increase the exploration potential of solutions space of PFP. AP phase implements a simulated annealing algorithm (SA with an exponential cooling function. MQP and AP are delimited by different ranges of temperatures; MQP is applied for a range of temperatures which goes from extremely high values to very high values; AP searches for solutions in a range of temperatures from high values to extremely low values. DEP phase finds the equilibrium in a dynamic way by applying least squares method. CMQA is tested with several instances of PFP.
A fast image encryption algorithm based on chaotic map
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Fully Digital Chaotic Differential Equation-based Systems And Methods
Radwan, Ahmed Gomaa Ahmed; Zidan, Mohammed A.; Salama, Khaled N.
2012-01-01
Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.
Fully Digital Chaotic Differential Equation-based Systems And Methods
Radwan, Ahmed Gomaa Ahmed
2012-09-06
Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.
International Nuclear Information System (INIS)
Hu Manfeng; Xu Zhenyuan; Zhang Rong; Hu Aihua
2007-01-01
This Letter further investigates the full state hybrid projective synchronization (FSHPS) of chaotic and hyper-chaotic systems with fully unknown parameters. Based on the Lyapunov stability theory, a unified adaptive controller and parameters update law can be designed for achieving the FSHPS of chaotic and/or hyper-chaotic systems with the same and different order. Especially, for two chaotic systems with different order, reduced order MFSHPS (an acronym for modified full state hybrid projective synchronization) and increased order MFSHPS are first studied in this Letter. Five groups numerical simulations are provided to verify the effectiveness of the proposed scheme. In addition, the proposed FSHPS scheme is quite robust against the effect of noise
Chaotic coordinates for the Large Helical Device
Energy Technology Data Exchange (ETDEWEB)
Hudson, S. R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Suzuki, Y. [National Institute for Natural Sciences, National Institute for Fusion Sciences, 322-6 Oroshi, Toki, 509-5292 (Japan)
2014-10-15
The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that flux surfaces become “straight” and islands become “square.”.
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
Digital color image encoding and decoding using a novel chaotic random generator
International Nuclear Information System (INIS)
Nien, H.H.; Huang, C.K.; Changchien, S.K.; Shieh, H.W.; Chen, C.T.; Tuan, Y.Y.
2007-01-01
This paper proposes a novel chaotic system, in which variables are treated as encryption keys in order to achieve secure transmission of digital color images. Since the dynamic response of chaotic system is highly sensitive to the initial values of a system and to the variation of a parameter, and chaotic trajectory is so unpredictable, we use elements of variables as encryption keys and apply these to computer internet communication of digital color images. As a result, we obtain much higher communication security. We adopt one statistic method involving correlation coefficient γ and FIPS PUB 140-1 to test on the distribution of distinguished elements of variables for continuous-time chaotic system, and accordingly select optimal encryption keys to use in secure communication of digital color images. At the transmitter end, we conduct RGB level decomposition on digital color images, and encrypt them with chaotic keys, and finally transmit them through computer internet. The same encryption keys are used to decrypt and recover the original images at the receiver end. Even if the encrypted images are stolen in the public channel, an intruder is not able to decrypt and recover the original images because of the lack of adequate encryption keys. Empirical example shows that the chaotic system and encryption keys applied in the encryption, transmission, decryption, and recovery of digital color images can achieve higher communication security and best recovered images
Energy Technology Data Exchange (ETDEWEB)
Mirhashemihaghighi, Shadi; Światowska, Jolanta [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Maurice, Vincent, E-mail: vincent.maurice@chimie-paristech.fr [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Seyeux, Antoine; Klein, Lorena H. [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Salmi, Emma; Ritala, Mikko [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Marcus, Philippe [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)
2016-11-30
Highlights: • 10–50 nm thick alumina coatings were grown on copper by atomic layer deposition. • Surface smoothening by substrate annealing was studied as pre-deposition treatment. • Corrosion protection is promoted by pre-treatment for 10 nm but not for thicker films. • Local adhesion failure is assigned to the stresses accumulated in the thicker films. • Surface smoothening decreases the interfacial strength bearing the film stresses. - Abstract: Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system
Energy Technology Data Exchange (ETDEWEB)
Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com [Institute of Modern Circuits and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Xiaowei [Department of Automation, Shanghai University, Shanghai 200072 (China)
2016-07-15
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2016-07-01
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.
Directory of Open Access Journals (Sweden)
Hui Lu
2014-01-01
Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.
A novel four-wing non-equilibrium chaotic system and its circuit ...
Indian Academy of Sciences (India)
Abstract. In this paper, we construct a novel, 4D smooth autonomous system. Compared to the existing chaotic systems, the most attractive point is that this system does not display any equilib- ria, but can still exhibit four-wing chaotic attractors. The proposed system is investigated through numerical simulations and ...
A Proposed Chaotic-Switched Turbo Coding Design and Its Application for Half-Duplex Relay Channel
Directory of Open Access Journals (Sweden)
Tamer H. M. Soliman
2015-01-01
Full Text Available Both reliability and security are two important subjects in modern digital communications, each with a variety of subdisciplines. In this paper we introduce a new proposed secure turbo coding system which combines chaotic dynamics and turbo coding reliability together. As we utilize the chaotic maps as a tool for hiding and securing the coding design in turbo coding system, this proposed system model can provide both data secrecy and data reliability in one process to combat problems in an insecure and unreliable data channel link. To support our research, we provide different schemes to design a chaotic secure reliable turbo coding system which we call chaotic-switched turbo coding schemes. In these schemes the design of turbo codes chaotically changed depending on one or more chaotic maps. Extensions of these chaotic-switched turbo coding schemes to half-duplex relay systems are also described. Results of simulations of these new secure turbo coding schemes are compared to classical turbo codes with the same coding parameters and the proposed system is able to achieve secured reasonable bit error rate performance when it is made to switch between different puncturing and design configuration parameters especially with low switching rates.
Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving
González-Miranda, J. M.
1998-06-01
Chaotic systems, when used to drive copies of themselves (or parts of themselves) may induce interesting behaviors in the driven system. In case the later exhibits invariance under amplification or translation, they may show amplification (reduction), or displacement of the attractor. It is shown how the behavior to be obtained is implied by the symmetries involved. Two explicit examples are studied to show how these phenomena manifest themselves under perfect and imperfect coupling.
Synchronization of mobile chaotic oscillator networks
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)
2016-09-15
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Synchronization of mobile chaotic oscillator networks
International Nuclear Information System (INIS)
Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert
2016-01-01
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Synchronization of mobile chaotic oscillator networks.
Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert
2016-09-01
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
A 3D Fractional-Order Chaotic System with Only One Stable Equilibrium and Controlling Chaos
Directory of Open Access Journals (Sweden)
Shiyun Shen
2017-01-01
Full Text Available One 3D fractional-order chaotic system with only one locally asymptotically stable equilibrium is reported. To verify the chaoticity, the maximum Lyapunov exponent (MAXLE with respect to the fractional-order and chaotic attractors are obtained by numerical calculation for this system. Furthermore, by linear scalar controller consisting of a single state variable, one control scheme for stabilization of the 3D fractional-order chaotic system is suggested. The numerical simulations show the feasibility of the control scheme.
Atomic layer deposition of a MoS₂ film.
Tan, Lee Kheng; Liu, Bo; Teng, Jing Hua; Guo, Shifeng; Low, Hong Yee; Tan, Hui Ru; Chong, Christy Yuen Tung; Yang, Ren Bin; Loh, Kian Ping
2014-09-21
A mono- to multilayer thick MoS₂ film has been grown by using the atomic layer deposition (ALD) technique at 300 °C on a sapphire wafer. ALD provides precise control of the MoS₂ film thickness due to pulsed introduction of the reactants and self-limiting reactions of MoCl₅ and H₂S. A post-deposition annealing of the ALD-deposited monolayer film improves the crystallinity of the film, which is evident from the presence of triangle-shaped crystals that exhibit strong photoluminescence in the visible range.
Scargle, Jeffrey D.
1990-01-01
While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.
International Nuclear Information System (INIS)
Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K
2006-01-01
A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity
Enhanced separation of diffusing particles by chaotic advection
International Nuclear Information System (INIS)
Aref, H.; Jones, S.W.
1989-01-01
Combining the reversibility of advection by a Stokes flow with the irreversibility of diffusion leads to a separation strategy for diffusing substances. This basic idea goes back to Taylor and Heller. It is shown here that the sensitivity of the method can be greatly enhanced by making the advection chaotic. The separation is particularly efficient when the thinnest structures resulting from advection are made comparable in size to a diffusion length. Simple heuristic estimates based on an understanding of chaotic motion and diffusion lead to a certain scaling that is seen in numerical experiments on this separation method
Optimal Control for a Class of Chaotic Systems
Directory of Open Access Journals (Sweden)
Jianxiong Zhang
2012-01-01
Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.
ELLIPSOMETRIC STUDY OF SEMITRANSPARENT SILVER LAYERS DEPOSITED ON GLASS
Directory of Open Access Journals (Sweden)
Víctor Toranzos
2014-12-01
Full Text Available Using ellipsometry, the film structure is characterized by optical indices n, k (visible region, 450 nm < < 580 nm and the thickness (15 < d < 35 nm. The optical indices change with the quantity of silver deposited, obtaining effective indices of 1.0 < n < 1.8 and 1.6 < k < 2.6 to the smaller deposits that belong to a volumetric fraction between 0.35 and 0.5 of silver in the air. An effective optical thickness film decrease is observed when the silver volumetric fraction increases, and a thickness increase with close indices to solid silver when the deposited silver increases. Optical and effective medium theory indices are compared.
Electroplated thick-film cobalt platinum permanent magnets
International Nuclear Information System (INIS)
Oniku, Ololade D.; Qi, Bin; Arnold, David P.
2016-01-01
The material and magnetic properties of multi-micron-thick (up to 6 μm) L1 0 CoPt magnetic films electroplated onto silicon substrates are investigated as candidate materials for integration in silicon-based microsystems. The influence of various process conditions on the structure and magnetic properties of electroplated CoPt thick-films is studied in order to better understand the complex process/structure/property relationships associated with the electroplated films. Process variables studied here include different seed layers, electroplating current densities (ranging from 25–200 mA/cm 2 ), deposition times (up to 60 min), and post-deposition annealing times and temperatures. Analyses include film morphology, film thickness, composition, surface roughness, grain size, phase volume fractions, and L1 0 ordering parameter. Key correlations are found relating process and structure variations to the extrinsic magnetic properties (remanence, coercivity, squareness, and energy product). Strong hard magnetic properties (B r ~0.8 T, H ci ~800 kA/m, squareness close to 0.9, and BH max of 100 kJ/m 3 ) are obtained for films deposited on Si/TiN/Ti/Cu at current densities of 100 mA/cm 2 , pH of 7, and subsequently annealed at 675 °C for 30 min. - Highlights: • CoPt films plated up to 6 μm thick on silicon substrates. • A1 to L1 0 phase transformation by annealing in forming gas. • Various process–structure–property relationships explored. • Key results: B r ~0.8 T, H ci ~800 kA/m, squareness 0.9, and BH max ~100 kJ/m 3 .
Chaos control of chaotic dynamical systems using backstepping design
International Nuclear Information System (INIS)
Yassen, M.T.
2006-01-01
This work presents chaos control of chaotic dynamical systems by using backstepping design method. This technique is applied to achieve chaos control for each of the dynamical systems Lorenz, Chen and Lue systems. Based on Lyapunov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical simulations are shown to verify the results
Directory of Open Access Journals (Sweden)
Tomislav Malvić
2006-12-01
Full Text Available Neogene depositional environments in the Drava depression can be classified in two groups. One group is of local alluvial fans, which were active during the period of Middle Miocene (Badenian extension through the entire Pannonian Basin. The second group is represented by continuous Pannonian and Pontian sedimentation starting with lacustrine environment of partly deep water and partly prodelta (turbidity fans and terminating at the delta plain sedimentation. The coarse-grained sediments of alluvial fans have the great hydrocarbon potential, because they often comprise reservoir rocks. Reservoir deposits are mostly overlain (as result of fan migration by pelitic seal deposits and sometimes including organic rich source facies. That Badenian sequences are often characterised by complete petroleum systems, what is confirmed by large number of oil and gas discoveries in such sediments in the Drava and other Croatian depressions. Alluvial environments are characterised by frequent changes of petrophysical properties, due to local character of depositional mechanism and material sources. In the presented paper, Stari Gradac-Barcs Nyugat field is selected as a case study for demonstrating the above mentioned heterogenic features of the Badenian sequences. Structural solutions are compared by maps of parameters related to depositional environment, i.e. porosity and thickness maps. Geostatistics were used for spatial extension of input dataset. The spatial variability of porosity values, i.e. reservoir quality, is interpreted by transition among different sub-environments (facies in the alluvial fan system.
One-way hash function construction based on chaotic map network
International Nuclear Information System (INIS)
Yang Huaqian; Wong, K.-W.; Liao Xiaofeng; Wang Yong; Yang Degang
2009-01-01
A novel chaotic hash algorithm based on a network structure formed by 16 chaotic maps is proposed. The original message is first padded with zeros to make the length a multiple of four. Then it is divided into a number of blocks each contains 4 bytes. In the hashing process, the blocks are mixed together by the chaotic map network since the initial value and the control parameter of each tent map are dynamically determined by the output of its neighbors. To enhance the confusion and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm. Theoretic analyses and numerical simulations both show that the proposed hash algorithm possesses good statistical properties, strong collision resistance and high flexibility, as required by practical keyed hash functions.
Amplification through chaotic synchronization in spatially extended beam-plasma systems
Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.
2017-12-01
In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.
Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization
International Nuclear Information System (INIS)
Yong, Li; Ying-Gan, Tang
2010-01-01
A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method
Gluteal fat thickness in pelvic CT
International Nuclear Information System (INIS)
Park, Jeong Mi; Jung, Se Young; Lee, Jae Mun; Park, Seog Hee; Kim, Choon Yul; Bahk, Yong Whee
1986-01-01
Many calcifications due to fat necrosis in the buttocks detected on the pelvis roentgenograms suggest that the majority of injections intended to be intramuscular actually are delivered into fat. We measured thickness of adult gluteal fat to decide whether the injection using needle of usual length is done into fat or muscle. We measured the vertical thickness of the subcutaneous fat at a point of 2-3cm above the femoral head cut slice with randomly collected 116 cases of adults in the department of Radiology, St. Mary's Hospital, Catholic Medical College. We found that 32% female cases might actually receive on intra adipose injection when a needle of maximum 3.8cm length is inserted into the buttock. If deposition into muscle is desirable, we need to choose needle whose length is appropriate for the site of injection and the patient's deposits of fat.
Mallory, Kristina; van Gorder, Robert A.
We study chaotic behavior of solutions to the bilinear system of Lorenz type developed by Celikovsky and Vanecek [1994] through an application of competitive modes. This bilinear system of Lorenz type is one possible canonical form holding the Lorenz equation as a special case. Using a competitive modes analysis, which is a completely analytical method allowing one to identify parameter regimes for which chaos may occur, we are able to demonstrate a number of parameter regimes which admit a variety of distinct chaotic behaviors. Indeed, we are able to draw some interesting conclusions which relate the behavior of the mode frequencies arising from writing the state variables for the Celikovsky-Vanecek model as coupled oscillators, and the types of emergent chaotic behaviors observed. The competitive modes analysis is particularly useful if all but one of the model parameters are fixed, and the remaining free parameter is used to modify the chaos observed, in a manner analogous to a bifurcation parameter. Through a thorough application of the method, we are able to identify several parameter regimes which give new dynamics (such as specific forms of chaos) which were not observed or studied previously in the Celikovsky-Vanecek model. Therefore, the results demonstrate the advantage of the competitive modes approach for detecting new parameter regimes leading to chaos in third-order dynamical systems.
Equilibrium helium film in the thick film limit
International Nuclear Information System (INIS)
Klier, J.; Schletterer, F.; Leiderer, P.; Shikin, V.
2003-01-01
For the thickness of a liquid or solid quantum film, like liquid helium or solid hydrogen, there exist still open questions about how the film thickness develops in certain limits. One of these is the thick film limit, i.e., the crossover from the thick film to bulk. We have performed measurements in this range using the surface plasmon resonance technique and an evaporated Ag film deposited on glass as substrate. The thickness of the adsorbed helium film is varied by changing the distance h of the bulk reservoir to the surface of the substrate. In the limiting case, when h > 0, the film thickness approaches about 100 nm following the van der Waals law in the retarded regime. The film thickness and its dependence on h is precisely determined and theoretically modeled. The equilibrium film thickness behaviour is discussed in detail. The agreement between theory and experiment is very good
Chaotic Secure Communication Systems with an Adaptive State Observer
Directory of Open Access Journals (Sweden)
Wei-Der Chang
2015-01-01
Full Text Available This paper develops a new digital communication scheme based on using a unified chaotic system and an adaptive state observer. The proposed communication system basically consists of five important elements: signal modulation, chaotic encryption, adaptive state observer, chaotic decryption, and signal demodulation. A sequence of digital signals will be delivered from the transmitter to the receiver through a public channel. It is rather reasonable that if the number of signals delivered on the public channel is fewer, then the security of such communication system is more guaranteed. Therefore, in order to achieve this purpose, a state observer will be designed and its function is to estimate full system states only by using the system output signals. In this way, the signals delivered on the public channel can be reduced mostly. According to these estimated state signals, the original digital sequences are then retrieved completely. Finally, experiment results are provided to verify the applicability of the proposed communication system.
Noise induced stabilization of chaotic free-running laser diode
Energy Technology Data Exchange (ETDEWEB)
Virte, Martin, E-mail: mvirte@b-phot.org [Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium)
2016-05-15
In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematically pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.